Open Problem Garden
login/create account
Home
»
Subject
Graph Theory
Title
Author(s)
Imp.¹
Rec.²
Topic » Subtopic
Posted by
Chromatic Number of Common Graphs
Hatami
;
Hladký
;
Kráľ
;
Norine
;
Razborov
✭✭
0
David Wood
Fractional Hadwiger
Harvey
;
Reed
;
Seymour
;
Wood
✭✭
1
David Wood
Large acyclic induced subdigraph in a planar oriented graph.
Harutyunyan
✭✭
0
Directed Graphs
fhavet
Edge Reconstruction Conjecture
Harary
✭✭✭
0
melch
Decomposing an eulerian graph into cycles.
Hajós
✭✭
0
Basic G.T.
»
Cycles
fhavet
The circular embedding conjecture
Haggard
✭✭✭
0
Basic G.T.
»
Cycles
mdevos
Graphs with a forbidden induced tree are chi-bounded
Gyarfas
✭✭✭
0
Coloring
»
Vertex coloring
mdevos
Laplacian Degrees of a Graph
Guo
✭✭
0
Algebraic G.T.
Robert Samal
Every 4-connected toroidal graph has a Hamilton cycle
Grunbaum
;
Nash-Williams
✭✭
0
Topological G.T.
fhavet
Grunbaum's Conjecture
Grunbaum
✭✭✭
0
Topological G.T.
»
Coloring
mdevos
4-regular 4-chromatic graphs of high girth
Grunbaum
✭✭
0
Coloring
mdevos
Universal Steiner triple systems
Grannell
;
Griggs
;
Knor
;
Skoviera
✭✭
0
Coloring
»
Edge coloring
macajova
Graham's conjecture on tree reconstruction
Graham
✭✭
0
Basic G.T.
mdevos
Pebbling a cartesian product
Graham
✭✭✭
0
mdevos
What is the smallest number of disjoint spanning trees made a graph Hamiltonian
Goldengorin
✭✭
0
Extremal G.T.
boris
Goldberg's conjecture
Goldberg
✭✭✭
0
Coloring
»
Edge coloring
mdevos
Circular coloring triangle-free subcubic planar graphs
Ghebleh
;
Zhu
✭✭
0
Coloring
»
Vertex coloring
mdevos
Geodesic cycles and Tutte's Theorem
Georgakopoulos
;
Sprüssel
✭✭
1
Basic G.T.
»
Cycles
Agelos
Hamiltonian cycles in line graphs of infinite graphs
Georgakopoulos
✭✭
0
Infinite Graphs
Robert Samal
Hamiltonian cycles in powers of infinite graphs
Georgakopoulos
✭✭
0
Infinite Graphs
Robert Samal
End-Devouring Rays
Georgakopoulos
✭
1
Infinite Graphs
Agelos
Are vertex minor closed classes chi-bounded?
Geelen
✭✭
0
Coloring
»
Vertex coloring
mdevos
Do any three longest paths in a connected graph have a vertex in common?
Gallai
✭✭
0
fhavet
Decomposing a connected graph into paths.
Gallai
✭✭✭
0
Basic G.T.
»
Paths
fhavet
Frankl's union-closed sets conjecture
Frankl
✭✭
0
Hypergraphs
tchow
Complete bipartite subgraphs of perfect graphs
Fox
✭✭
0
Basic G.T.
mdevos
Algorithm for graph homomorphisms
Fomin
;
Heggernes
;
Kratsch
✭✭
0
Coloring
»
Homomorphisms
jfoniok
4-connected graphs are not uniquely hamiltonian
Fleischner
✭✭
0
Basic G.T.
»
Cycles
fhavet
Acyclic edge-colouring
Fiamcik
✭✭
0
Coloring
»
Edge coloring
mdevos
3-Colourability of Arrangements of Great Circles
Felsner
;
Hurtado
;
Noy
;
Streinu
✭✭
1
Topological G.T.
»
Coloring
David Wood
Exact colorings of graphs
Erickson
✭✭
0
Martin Erickson
Turán number of a finite family.
Erdos
;
Simonovits
✭✭
0
fhavet
Strong edge colouring conjecture
Erdos
;
Nesetril
✭✭
0
Coloring
»
Edge coloring
fhavet
Double-critical graph conjecture
Erdos
;
Lovasz
✭✭
0
Coloring
»
Vertex coloring
DFR
The Erdös-Hajnal Conjecture
Erdos
;
Hajnal
✭✭✭
0
Extremal G.T.
mdevos
Unions of triangle free graphs
Erdos
;
Hajnal
✭✭✭
0
Infinite Graphs
mdevos
Multicolour Erdős--Hajnal Conjecture
Erdos
;
Hajnal
✭✭✭
0
Extremal G.T.
Jon Noel
The Crossing Number of the Hypercube
Erdos
;
Guy
✭✭
0
Topological G.T.
»
Crossing numbers
Robert Samal
Odd-cycle transversal in triangle-free graphs
Erdos
;
Faudree
;
Pach
;
Spencer
✭✭
0
Extremal G.T.
fhavet
Erdős–Faber–Lovász conjecture
Erdos
;
Faber
;
Lovasz
✭✭✭
0
Coloring
»
Vertex coloring
Jon Noel
Star chromatic index of cubic graphs
Dvorak
;
Mohar
;
Samal
✭✭
0
Robert Samal
Star chromatic index of complete graphs
Dvorak
;
Mohar
;
Samal
✭✭
1
Robert Samal
Characterizing (aleph_0,aleph_1)-graphs
Diestel
;
Leader
✭✭✭
0
Infinite Graphs
mdevos
Drawing disconnected graphs on surfaces
DeVos
;
Mohar
;
Samal
✭✭
0
Topological G.T.
»
Crossing numbers
mdevos
What is the largest graph of positive curvature?
DeVos
;
Mohar
✭
1
Topological G.T.
»
Planar graphs
mdevos
Circular colouring the orthogonality graph
DeVos
;
Ghebleh
;
Goddyn
;
Mohar
;
Naserasr
✭✭
0
Coloring
»
Vertex coloring
mdevos
The three 4-flows conjecture
DeVos
✭✭
0
Coloring
»
Nowhere-zero flows
mdevos
A homomorphism problem for flows
DeVos
✭✭
0
Coloring
»
Nowhere-zero flows
mdevos
Packing T-joins
DeVos
✭✭
0
Coloring
»
Edge coloring
mdevos
Partitioning edge-connectivity
DeVos
✭✭
0
Basic G.T.
»
Connectivity
mdevos
« first
‹ previous
1
2
3
4
5
next ›
last »
Navigate
more
Recent Activity
3-Edge-Coloring Conjecture
Several ways to apply a (multivalued) multiargument function to a family of filters
Jones' conjecture
Multicolour Erdős--Hajnal Conjecture
Sidorenko's Conjecture
more