
Streinu, Ileana
3-Colourability of Arrangements of Great Circles ★★
Author(s): Felsner; Hurtado; Noy; Streinu
Consider a set of great circles on a sphere with no three circles meeting at a point. The arrangement graph of
has a vertex for each intersection point, and an edge for each arc directly connecting two intersection points. So this arrangement graph is 4-regular and planar.
Conjecture Every arrangement graph of a set of great circles is
-colourable.

Keywords: arrangement graph; graph coloring
