# DeVos, Matt

## Friendly partitions ★★

Author(s): DeVos

A *friendly* partition of a graph is a partition of the vertices into two sets so that every vertex has at least as many neighbours in its own class as in the other.

**Problem**Is it true that for every , all but finitely many -regular graphs have friendly partitions?

## Circular colouring the orthogonality graph ★★

Author(s): DeVos; Ghebleh; Goddyn; Mohar; Naserasr

Let denote the graph with vertex set consisting of all lines through the origin in and two vertices adjacent in if they are perpendicular.

**Problem**Is ?

Keywords: circular coloring; geometric graph; orthogonality

## 5-local-tensions ★★

Author(s): DeVos

**Conjecture**There exists a fixed constant (probably suffices) so that every embedded (loopless) graph with edge-width has a 5-local-tension.

## Gao's theorem for nonabelian groups ★★

Author(s): DeVos

For every finite multiplicative group , let () denote the smallest integer so that every sequence of elements of has a subsequence of length (length ) which has product equal to 1 in some order.

**Conjecture**for every finite group .

Keywords: subsequence sum; zero sum

## Antichains in the cycle continuous order ★★

Author(s): DeVos

If , are graphs, a function is called *cycle-continuous* if the pre-image of every element of the (binary) cycle space of is a member of the cycle space of .

**Problem**Does there exist an infinite set of graphs so that there is no cycle continuous mapping between and whenever ?

## Drawing disconnected graphs on surfaces ★★

Author(s): DeVos; Mohar; Samal

**Conjecture**Let be the disjoint union of the graphs and and let be a surface. Is it true that every optimal drawing of on has the property that and are disjoint?

Keywords: crossing number; surface

## What is the largest graph of positive curvature? ★

**Problem**What is the largest connected planar graph of minimum degree 3 which has everywhere positive combinatorial curvature, but is not a prism or antiprism?

Keywords: curvature; planar graph

## Partitioning edge-connectivity ★★

Author(s): DeVos

**Question**Let be an -edge-connected graph. Does there exist a partition of so that is -edge-connected and is -edge-connected?

Keywords: edge-coloring; edge-connectivity

## Packing T-joins ★★

Author(s): DeVos

**Conjecture**There exists a fixed constant (probably suffices) so that every graft with minimum -cut size at least contains a -join packing of size at least .

## A homomorphism problem for flows ★★

Author(s): DeVos

**Conjecture**Let be abelian groups and let and satisfy and . If there is a homomorphism from to , then every graph with a B-flow has a B'-flow.

Keywords: homomorphism; nowhere-zero flow; tension