Recent Activity

Discrete Logarithm Problem ★★★

Author(s):

If $ p $ is prime and $ g,h \in {\mathbb Z}_p^* $, we write $ \log_g(h) = n $ if $ n \in {\mathbb Z} $ satisfies $ g^n =  h $. The problem of finding such an integer $ n $ for a given $ g,h \in {\mathbb Z}^*_p $ (with $ g \neq 1 $) is the Discrete Log Problem.

Conjecture   There does not exist a polynomial time algorithm to solve the Discrete Log Problem.

Keywords: discrete log; NP

Good Edge Labelings ★★

Author(s): Araújo; Cohen; Giroire; Havet

Question   What is the maximum edge density of a graph which has a good edge labeling?

We say that a graph is good-edge-labeling critical, if it has no good edge labeling, but every proper subgraph has a good edge labeling.

Conjecture   For every $ c<4 $, there is only a finite number of good-edge-labeling critical graphs with average degree less than $ c $.

Keywords: good edge labeling, edge labeling

Special Primes

Author(s): George BALAN

Conjecture   Let $ p $ be a prime natural number. Find all primes $ q\equiv1\left(\mathrm{mod}\: p\right) $, such that $ 2^{\frac{\left(q-1\right)}{p}}\equiv1\left(\mathrm{mod}\: q\right) $.

Keywords:

Three-chromatic (0,2)-graphs ★★

Author(s): Payan

Question   Are there any (0,2)-graphs with chromatic number exactly three?

Keywords:

Choice Number of k-Chromatic Graphs of Bounded Order ★★

Author(s): Noel

Conjecture   If $ G $ is a $ k $-chromatic graph on at most $ mk $ vertices, then $ \text{ch}(G)\leq \text{ch}(K_{m*k}) $.

Keywords: choosability; complete multipartite graph; list coloring

The Riemann Hypothesis ★★★★

Author(s): Riemann

The zeroes of the Riemann zeta function that are inside the Critical Strip (i.e. the vertical strip of the complex plane where the real part of the complex variable is in ]0;1[), are actually located on the Critical line ( the vertical line of the complex plane with real part equal to 1/2)

Keywords: Millenium Problems; zeta

Euler-Mascheroni constant ★★★

Author(s):

Question   Is Euler-Mascheroni constant an transcendental number?

Keywords: constant; Euler; irrational; Mascheroni; rational; transcendental

Graham's conjecture on tree reconstruction ★★

Author(s): Graham

Problem   for every graph $ G $, we let $ L(G) $ denote the line graph of $ G $. Given that $ G $ is a tree, can we determine it from the integer sequence $ |V(G)|, |V(L(G))|, |V(L(L(G)))|, \ldots $?

Keywords: reconstruction; tree

Vertex Cover Integrality Gap ★★

Author(s): Atserias

Conjecture   For every $ \varepsilon > 0 $ there is $ \delta > 0 $ such that, for every large $ n $, there are $ n $-vertex graphs $ G $ and $ H $ such that $ G \equiv_{\delta n}^{\mathrm{C}} H $ and $ \mathrm{vc}(G) \ge (2 - \varepsilon) \cdot \mathrm{vc}(H) $.

Keywords: counting quantifiers; FMT12-LesHouches

Big Line or Big Clique in Planar Point Sets ★★

Author(s): Kara; Por; Wood

Let $ S $ be a set of points in the plane. Two points $ v $ and $ w $ in $ S $ are visible with respect to $ S $ if the line segment between $ v $ and $ w $ contains no other point in $ S $.

Conjecture   For all integers $ k,\ell\geq2 $ there is an integer $ n $ such that every set of at least $ n $ points in the plane contains at least $ \ell $ collinear points or $ k $ pairwise visible points.

Keywords: Discrete Geometry; Geometric Ramsey Theory

Mixing Circular Colourings

Author(s): Brewster; Noel

Question   Is $ \mathfrak{M}_c(G) $ always rational?

Keywords: discrete homotopy; graph colourings; mixing

The Borodin-Kostochka Conjecture ★★

Author(s): Borodin; Kostochka

Conjecture   Every graph with maximum degree $ \Delta \geq 9 $ has chromatic number at most $ \max\{\Delta-1, \omega\} $.

Keywords:

Chromatic number of random lifts of complete graphs ★★

Author(s): Amit

Question   Is the chromatic number of a random lift of $ K_5 $ concentrated on a single value?

Keywords: random lifts, coloring

3 is a primitive root modulo primes of the form 16 q^4 + 1, where q>3 is prime ★★

Author(s):

Conjecture   $ 3~ $ is a primitive root modulo $ ~p $ for all primes $ ~p=16\cdot q^4+1 $, where $ ~q>3 $ is prime.

Keywords:

Circular choosability of planar graphs

Author(s): Mohar

Let $ G = (V, E) $ be a graph. If $ p $ and $ q $ are two integers, a $ (p,q) $-colouring of $ G $ is a function $ c $ from $ V $ to $ \{0,\dots,p-1\} $ such that $ q \le |c(u)-c(v)| \le p-q $ for each edge $ uv\in E $. Given a list assignment $ L $ of $ G $, i.e.~a mapping that assigns to every vertex $ v $ a set of non-negative integers, an $ L $-colouring of $ G $ is a mapping $ c : V \to N $ such that $ c(v)\in L(v) $ for every $ v\in V $. A list assignment $ L $ is a $ t $-$ (p,q) $-list-assignment if $ L(v) \subseteq \{0,\dots,p-1\} $ and $ |L(v)| \ge tq $ for each vertex $ v \in V $ . Given such a list assignment $ L $, the graph G is $ (p,q) $-$ L $-colourable if there exists a $ (p,q) $-$ L $-colouring $ c $, i.e. $ c $ is both a $ (p,q) $-colouring and an $ L $-colouring. For any real number $ t \ge 1 $, the graph $ G $ is $ t $-$ (p,q) $-choosable if it is $ (p,q) $-$ L $-colourable for every $ t $-$ (p,q) $-list-assignment $ L $. Last, $ G $ is circularly $ t $-choosable if it is $ t $-$ (p,q) $-choosable for any $ p $, $ q $. The circular choosability (or circular list chromatic number or circular choice number) of G is $$cch(G) := \inf\{t \ge 1 : G \text{ is circularly $t$-choosable}\}.$$

Problem   What is the best upper bound on circular choosability for planar graphs?

Keywords: choosability; circular colouring; planar graphs

A conjecture about direct product of funcoids ★★

Author(s): Porton

Conjecture   Let $ f_1 $ and $ f_2 $ are monovalued, entirely defined funcoids with $ \operatorname{Src}f_1=\operatorname{Src}f_2=A $. Then there exists a pointfree funcoid $ f_1 \times^{\left( D \right)} f_2 $ such that (for every filter $ x $ on $ A $) $$\left\langle f_1 \times^{\left( D \right)} f_2 \right\rangle x = \bigcup \left\{ \langle f_1\rangle X \times^{\mathsf{FCD}} \langle f_2\rangle X \hspace{1em} | \hspace{1em} X \in \mathrm{atoms}^{\mathfrak{A}} x \right\}.$$ (The join operation is taken on the lattice of filters with reversed order.)

A positive solution of this problem may open a way to prove that some funcoids-related categories are cartesian closed.

Keywords: category theory; general topology

MacEachen Conjecture

Author(s): McEachen

Conjecture   Every odd prime number must either be adjacent to, or a prime distance away from a primorial or primorial product.

Keywords: primality; prime distribution

Criterion for boundedness of power series

Author(s): Rüdinger

Question   Give a necessary and sufficient criterion for the sequence $ (a_n) $ so that the power series $ \sum_{n=0}^{\infty} a_n x^n $ is bounded for all $ x \in \mathbb{R} $.

Keywords: boundedness; power series; real analysis

Length of surreal product

Author(s): Gonshor

Conjecture   Every surreal number has a unique sign expansion, i.e. function $ f: o\rightarrow \{-, +\} $, where $ o $ is some ordinal. This $ o $ is the length of given sign expansion and also the birthday of the corresponding surreal number. Let us denote this length of $ s $ as $ \ell(s) $.

It is easy to prove that

$$ \ell(s+t) \leq \ell(s)+\ell(t) $$

What about

$$ \ell(s\times t) \leq \ell(s)\times\ell(t) $$

?

Keywords: surreal numbers

Durer's Conjecture ★★★

Author(s): Durer; Shephard

Conjecture   Every convex polytope has a non-overlapping edge unfolding.

Keywords: folding; polytope