Recent Activity

4-regular 4-chromatic graphs of high girth ★★

Author(s): Grunbaum

Problem   Do there exist 4-regular 4-chromatic graphs of arbitrarily high girth?

Keywords: coloring; girth

Perfect cuboid ★★

Author(s):

Conjecture   Does a perfect cuboid exist?

Keywords:

Forcing a $K_6$-minor ★★

Author(s): Barát ; Joret; Wood

Conjecture   Every graph with minimum degree at least 7 contains a $ K_6 $-minor.
Conjecture   Every 7-connected graph contains a $ K_6 $-minor.

Keywords: connectivity; graph minors

Funcoidal products inside an inward reloid ★★

Author(s): Porton

Conjecture   (solved) If $ a \times^{\mathsf{\ensuremath{\operatorname{RLD}}}} b \subseteq \left( \mathsf{\ensuremath{\operatorname{RLD}}} \right)_{\ensuremath{\operatorname{in}}} f $ then $ a \times^{\mathsf{\ensuremath{\operatorname{FCD}}}} b \subseteq f $ for every funcoid $ f $ and atomic f.o. $ a $ and $ b $ on the source and destination of $ f $ correspondingly.

A stronger conjecture:

Conjecture   If $ \mathcal{A} \times^{\mathsf{\ensuremath{\operatorname{RLD}}}} \mathcal{B} \subseteq \left( \mathsf{\ensuremath{\operatorname{RLD}}} \right)_{\ensuremath{\operatorname{in}}} f $ then $ \mathcal{A} \times^{\mathsf{\ensuremath{\operatorname{FCD}}}} \mathcal{B} \subseteq f $ for every funcoid $ f $ and $ \mathcal{A} \in \mathfrak{F} \left( \ensuremath{\operatorname{Src}}f \right) $, $ \mathcal{B} \in \mathfrak{F} \left( \ensuremath{\operatorname{Dst}}f \right) $.

Keywords: inward reloid

Odd cycles and low oddness ★★

Author(s):

Conjecture   If in a bridgeless cubic graph $ G $ the cycles of any $ 2 $-factor are odd, then $ \omega(G)\leq 2 $, where $ \omega(G) $ denotes the oddness of the graph $ G $, that is, the minimum number of odd cycles in a $ 2 $-factor of $ G $.

Keywords:

Odd perfect numbers ★★★

Author(s): Ancient/folklore

Conjecture   There is no odd perfect number.

Keywords: perfect number

Matching cut and girth ★★

Author(s):

Question   For every $ d $ does there exists a $ g $ such that every graph with average degree smaller than $ d $ and girth at least $ g $ has a matching-cut?

Keywords: matching cut, matching, cut

Strong 5-cycle double cover conjecture ★★★

Author(s): Arthur; Hoffmann-Ostenhof

Conjecture   Let $ C $ be a circuit in a bridgeless cubic graph $ G $. Then there is a five cycle double cover of $ G $ such that $ C $ is a subgraph of one of these five cycles.

Keywords: cycle cover

Petersen coloring conjecture ★★★

Author(s): Jaeger

Conjecture   Let $ G $ be a cubic graph with no bridge. Then there is a coloring of the edges of $ G $ using the edges of the Petersen graph so that any three mutually adjacent edges of $ G $ map to three mutually adjancent edges in the Petersen graph.

Keywords: cubic; edge-coloring; Petersen graph

Characterizing (aleph_0,aleph_1)-graphs ★★★

Author(s): Diestel; Leader

Call a graph an $ (\aleph_0,\aleph_1) $-graph if it has a bipartition $ (A,B) $ so that every vertex in $ A $ has degree $ \aleph_0 $ and every vertex in $ B $ has degree $ \aleph_1 $.

Problem   Characterize the $ (\aleph_0,\aleph_1) $-graphs.

Keywords: binary tree; infinite graph; normal spanning tree; set theory

The Berge-Fulkerson conjecture ★★★★

Author(s): Berge; Fulkerson

Conjecture   If $ G $ is a bridgeless cubic graph, then there exist 6 perfect matchings $ M_1,\ldots,M_6 $ of $ G $ with the property that every edge of $ G $ is contained in exactly two of $ M_1,\ldots,M_6 $.

Keywords: cubic; perfect matching

Obstacle number of planar graphs

Author(s): Alpert; Koch; Laison

Does there exist a planar graph with obstacle number greater than 1? Is there some $ k $ such that every planar graph has obstacle number at most $ k $?

Keywords: graph drawing; obstacle number; planar graph; visibility graph

Twin prime conjecture ★★★★

Author(s):

Conjecture   There exist infinitely many positive integers $ n $ so that both $ n $ and $ n+2 $ are prime.

Keywords: prime; twin prime

Cores of strongly regular graphs ★★★

Author(s): Cameron; Kazanidis

Question   Does every strongly regular graph have either itself or a complete graph as a core?

Keywords: core; strongly regular

Square achievement game on an n x n grid ★★

Author(s): Erickson

Problem   Two players alternately write O's (first player) and X's (second player) in the unoccupied cells of an $ n \times n $ grid. The first player (if any) to occupy four cells at the vertices of a square with horizontal and vertical sides is the winner. What is the outcome of the game given optimal play? Note: Roland Bacher and Shalom Eliahou proved that every 15 x 15 binary matrix contains four equal entries (all 0's or all 1's) at the vertices of a square with horizontal and vertical sides. So the game must result in a winner (the first player) when n=15.

Keywords: game

What is the largest graph of positive curvature?

Author(s): DeVos; Mohar

Problem   What is the largest connected planar graph of minimum degree 3 which has everywhere positive combinatorial curvature, but is not a prism or antiprism?

Keywords: curvature; planar graph

Extension complexity of (convex) polygons ★★

Author(s):

The extension complexity of a polytope $ P $ is the minimum number $ q $ for which there exists a polytope $ Q $ with $ q $ facets and an affine mapping $ \pi $ with $ \pi(Q) = P $.

Question   Does there exists, for infinitely many integers $ n $, a convex polygon on $ n $ vertices whose extension complexity is $ \Omega(n) $?

Keywords: polytope, projection, extension complexity, convex polygon

Strict inequalities for products of filters

Author(s): Porton

Conjecture   $ \mathcal{A} \times^{\mathsf{\ensuremath{\operatorname{RLD}}}}_F \mathcal{B}   \subset \mathcal{A} \ltimes \mathcal{B} \subset \mathcal{A}   \times^{\mathsf{\ensuremath{\operatorname{RLD}}}} \mathcal{B} $ for some filter objects $ \mathcal{A} $, $ \mathcal{B} $. Particularly, is this formula true for $ \mathcal{A} = \mathcal{B} = \Delta \cap \uparrow^{\mathbb{R}} \left( 0 ; +   \infty \right) $?

A weaker conjecture:

Conjecture   $ \mathcal{A} \times^{\mathsf{\ensuremath{\operatorname{RLD}}}}_F \mathcal{B}   \subset \mathcal{A} \ltimes \mathcal{B} $ for some filter objects $ \mathcal{A} $, $ \mathcal{B} $.

Keywords: filter products

Barnette's Conjecture ★★★

Author(s): Barnette

Conjecture   Every 3-connected cubic planar bipartite graph is Hamiltonian.

Keywords: bipartite; cubic; hamiltonian

Covering a square with unit squares ★★

Author(s):

Conjecture   For any integer $ n \geq 1 $, it is impossible to cover a square of side greater than $ n $ with $ n^2+1 $ unit squares.

Keywords: