Given a finite family of graphs and an integer , the Turán number of is the largest integer such that there exists a graph on vertices with edges which contains no member of as a subgraph.
Conjecture For every finite family of graphs there exists an such that .
Let denote the set of all permutations of . Let and denote respectively the number of increasing and the number of decreasing sequences of contiguous numbers in . Let denote the set of subsequences of with length at least three. Let denote .
A permutation is called a Roller Coaster permutation if . Let be the set of all Roller Coaster permutations in .
Conjecture For ,
\item If , then . \item If , then with .
Conjecture (Odd Sum conjecture) Given ,
\item If , then is odd for . \item If , then for all .
Conjecture Let be an eulerian graph of minimum degree , and let be an eulerian tour of . Then admits a decomposition into cycles none of which contains two consecutive edges of .
An alternating walk in a digraph is a walk so that the vertex is either the head of both and or the tail of both and for every . A digraph is universal if for every pair of edges , there is an alternating walk containing both and
Question Does there exist a locally finite highly arc transitive digraph which is universal?
Conjecture For every , the sequence in consisting of copes of and copies of has the fewest number of distinct subsequence sums over all zero-free sequences from of length .
An oriented colouring of an oriented graph is assignment of colours to the vertices such that no two arcs receive ordered pairs of colours and . It is equivalent to a homomorphism of the digraph onto some tournament of order .
We say that a set is -universal if every vertex planar graph can be drawn in the plane so that each vertex maps to a distinct point in , and all edges are (non-intersecting) straight line segments.
Question Does there exist an -universal set of size ?
Conjecture If is a bridgelesscubic graph, then there exist 6 perfect matchings of with the property that every edge of is contained in exactly two of .
A covering design, or covering, is a family of -subsets, called blocks, chosen from a -set, such that each -subset is contained in at least one of the blocks. The number of blocks is the covering’s size, and the minimum size of such a covering is denoted by .
Problem Find a closed form, recurrence, or better bounds for . Find a procedure for constructing minimal coverings.