Random

Open problem ★★

Author(s):

Open problem

Keywords:

3 is a primitive root modulo primes of the form 16 q^4 + 1, where q>3 is prime ★★

Author(s):

Conjecture   $ 3~ $ is a primitive root modulo $ ~p $ for all primes $ ~p=16\cdot q^4+1 $, where $ ~q>3 $ is prime.

Keywords:

Generalized path-connectedness in proximity spaces ★★

Author(s): Porton

Let $ \delta $ be a proximity.

A set $ A $ is connected regarding $ \delta $ iff $ \forall X,Y \in \mathscr{P} A \setminus \{ \emptyset \} : \left( X \cup Y = A \Rightarrow X \mathrel{\delta} Y \right) $.

Conjecture   The following statements are equivalent for every endofuncoid $ \mu $ and a set $ U $:
    \item $ U $ is connected regarding $ \mu $. \item For every $ a, b \in U $ there exists a totally ordered set $ P \subseteq   U $ such that $ \min P = a $, $ \max P = b $, and for every partion $ \{ X, Y \} $ of $ P $ into two sets $ X $, $ Y $ such that $ \forall x \in X, y \in Y : x < y $, we have $ X \mathrel{[ \mu]^{\ast}} Y $.

Keywords: connected; connectedness; proximity space

Free Generator Warframe Working Platinum Cheats (Warframe Generator) ★★

Author(s):

Free Generator Warframe Working Platinum Cheats (Warframe Generator)

Keywords:

Vertex Coloring of graph fractional powers ★★★

Author(s): Iradmusa

Conjecture   Let $ G $ be a graph and $ k $ be a positive integer. The $ k- $power of $ G $, denoted by $ G^k $, is defined on the vertex set $ V(G) $, by connecting any two distinct vertices $ x $ and $ y $ with distance at most $ k $. In other words, $ E(G^k)=\{xy:1\leq d_G(x,y)\leq k\} $. Also $ k- $subdivision of $ G $, denoted by $ G^\frac{1}{k} $, is constructed by replacing each edge $ ij $ of $ G $ with a path of length $ k $. Note that for $ k=1 $, we have $ G^\frac{1}{1}=G^1=G $.
Now we can define the fractional power of a graph as follows:
Let $ G $ be a graph and $ m,n\in \mathbb{N} $. The graph $ G^{\frac{m}{n}} $ is defined by the $ m- $power of the $ n- $subdivision of $ G $. In other words $ G^{\frac{m}{n}}\isdef (G^{\frac{1}{n}})^m $.
Conjecture. Let $ G $ be a connected graph with $ \Delta(G)\geq3 $ and $ m $ be a positive integer greater than 1. Then for any positive integer $ n>m $, we have $ \chi(G^{\frac{m}{n}})=\omega(G^\frac{m}{n}) $.
In [1], it was shown that this conjecture is true in some special cases.

Keywords: chromatic number, fractional power of graph, clique number

Crossing sequences ★★

Author(s): Archdeacon; Bonnington; Siran

Conjecture   Let $ (a_0,a_1,a_2,\ldots,0) $ be a sequence of nonnegative integers which strictly decreases until $ 0 $.

Then there exists a graph that be drawn on a surface with orientable (nonorientable, resp.) genus $ i $ with $ a_i $ crossings, but not with less crossings.

Keywords: crossing number; crossing sequence

Jaeger's modular orientation conjecture ★★★

Author(s): Jaeger

Conjecture   Every $ 4k $-edge-connected graph can be oriented so that $ {\mathit indegree}(v) - {\mathit outdegree}(v) \cong 0 $ (mod $ 2k+1 $) for every vertex $ v $.

Keywords: nowhere-zero flow; orientation

Reconstruction conjecture ★★★★

Author(s): Kelly; Ulam

The deck of a graph $ G $ is the multiset consisting of all unlabelled subgraphs obtained from $ G $ by deleting a vertex in all possible ways (counted according to multiplicity).

Conjecture   If two graphs on $ \ge 3 $ vertices have the same deck, then they are isomorphic.

Keywords: reconstruction

Twin prime conjecture ★★★★

Author(s):

Conjecture   There exist infinitely many positive integers $ n $ so that both $ n $ and $ n+2 $ are prime.

Keywords: prime; twin prime

PTAS for feedback arc set in tournaments ★★

Author(s): Ailon; Alon

Question   Is there a polynomial time approximation scheme for the feedback arc set problem for the class of tournaments?

Keywords: feedback arc set; PTAS; tournament

Monochromatic reachability or rainbow triangles ★★★

Author(s): Sands; Sauer; Woodrow

In an edge-colored digraph, we say that a subgraph is rainbow if all its edges have distinct colors, and monochromatic if all its edges have the same color.

Problem   Let $ G $ be a tournament with edges colored from a set of three colors. Is it true that $ G $ must have either a rainbow directed cycle of length three or a vertex $ v $ so that every other vertex can be reached from $ v $ by a monochromatic (directed) path?

Keywords: digraph; edge-coloring; tournament

Linear Hypergraphs with Dimension 3 ★★

Author(s): de Fraysseix; Ossona de Mendez; Rosenstiehl

Conjecture   Any linear hypergraph with incidence poset of dimension at most 3 is the intersection hypergraph of a family of triangles and segments in the plane.

Keywords: Hypergraphs

Match Masters Coins Cheats 2024 Update (FREE!!) ★★

Author(s):

Match Masters Coins Cheats 2024 Update (FREE!!)

Keywords:

Graceful Tree Conjecture ★★★

Author(s):

Conjecture   All trees are graceful

Keywords: combinatorics; graceful labeling

Saturated $k$-Sperner Systems of Minimum Size ★★

Author(s): Morrison; Noel; Scott

Question   Does there exist a constant $ c>1/2 $ and a function $ n_0(k) $ such that if $ |X|\geq n_0(k) $, then every saturated $ k $-Sperner system $ \mathcal{F}\subseteq \mathcal{P}(X) $ has cardinality at least $ 2^{(1+o(1))ck} $?

Keywords: antichain; extremal combinatorics; minimum saturation; saturation; Sperner system

Number of Cliques in Minor-Closed Classes ★★

Author(s): Wood

Question   Is there a constant $ c $ such that every $ n $-vertex $ K_t $-minor-free graph has at most $ c^tn $ cliques?

Keywords: clique; graph; minor

Arc-disjoint directed cycles in regular directed graphs ★★

Author(s): Alon; McDiarmid; Molloy

Conjecture   If $ G $ is a $ k $-regular directed graph with no parallel arcs, then $ G $ contains a collection of $ {k+1 \choose 2} $ arc-disjoint directed cycles.

Keywords:

Dragon Ball Legends Cheats Generator (Ios Android) ★★

Author(s):

Dragon Ball Legends Cheats Generator (Ios Android)

Keywords:

S(S(f)) = S(f) for reloids ★★

Author(s): Porton

Question   $ S(S(f)) = S(f) $ for every endo-reloid $ f $?

Keywords: reloid

The Hodge Conjecture ★★★★

Author(s): Hodge

Conjecture   Let $ X $ be a complex projective variety. Then every Hodge class is a rational linear combination of the cohomology classes of complex subvarieties of $ X $.

Keywords: Hodge Theory; Millenium Problems

Triangle-packing vs triangle edge-transversal. ★★

Author(s): Tuza

Conjecture   If $ G $ has at most $ k $ edge-disjoint triangles, then there is a set of $ 2k $ edges whose deletion destroys every triangle.

Keywords:

Square achievement game on an n x n grid ★★

Author(s): Erickson

Problem   Two players alternately write O's (first player) and X's (second player) in the unoccupied cells of an $ n \times n $ grid. The first player (if any) to occupy four cells at the vertices of a square with horizontal and vertical sides is the winner. What is the outcome of the game given optimal play? Note: Roland Bacher and Shalom Eliahou proved that every 15 x 15 binary matrix contains four equal entries (all 0's or all 1's) at the vertices of a square with horizontal and vertical sides. So the game must result in a winner (the first player) when n=15.

Keywords: game

Star Stable Free Star Coins Jorvik Coins Cheats 2024 Real Working New Method ★★

Author(s):

Star Stable Free Star Coins Jorvik Coins Cheats 2024 Real Working New Method

Keywords:

Idle Miner Tycoon Cheats Generator 2024 Free No Verification (New.updated) ★★

Author(s):

Idle Miner Tycoon Cheats Generator 2024 Free No Verification (New.updated)

Keywords:

Dragon Ball Z Dokkan Battle Cheats Generator 2024 (FREE!) ★★

Author(s):

Dragon Ball Z Dokkan Battle Cheats Generator 2024 (FREE!)

Keywords:

Hamilton decomposition of prisms over 3-connected cubic planar graphs ★★

Author(s): Alspach; Rosenfeld

Conjecture   Every prism over a $ 3 $-connected cubic planar graph can be decomposed into two Hamilton cycles.

Keywords:

Beneš Conjecture ★★★

Author(s): Beneš

Let $ E $ be a non-empty finite set. Given a partition $ \bf h $ of $ E $, the stabilizer of $ \bf h $, denoted $ S(\bf h) $, is the group formed by all permutations of $ E $ preserving each block of $ \mathbf h $.

Problem  ($ \star $)   Find a sufficient condition for a sequence of partitions $ {\bf h}_1, \dots, {\bf h}_\ell $ of $ E $ to be complete, i.e. such that the product of their stabilizers $ S({\bf h}_1) S({\bf h}_2) \dots S({\bf h}_\ell) $ is equal to the whole symmetric group $ \frak S(E) $ on $ E $. In particular, what about completeness of the sequence $ \bf h,\delta(\bf h),\dots,\delta^{\ell-1}(\bf h) $, given a partition $ \bf h $ of $ E $ and a permutation $ \delta $ of $ E $?
Conjecture  (Beneš)   Let $ \bf u $ be a uniform partition of $ E $ and $ \varphi $ be a permutation of $ E $ such that $ \bf u\wedge\varphi(\bf u)=\bf 0 $. Suppose that the set $ \big(\varphi S({\bf u})\big)^{n} $ is transitive, for some integer $ n\ge2 $. Then $$ \frak S(E) = \big(\varphi S({\bf u})\big)^{2n-1}. $$

Keywords:

Dragon City Cheats Generator 2024 Update Hacks (Verified) ★★

Author(s):

Dragon City Cheats Generator 2024 Update Hacks (Verified)

Keywords:

Hamilton cycle in small d-diregular graphs ★★

Author(s): Jackson

An directed graph is $ k $-diregular if every vertex has indegree and outdegree at least $ k $.

Conjecture   For $ d >2 $, every $ d $-diregular oriented graph on at most $ 4d+1 $ vertices has a Hamilton cycle.

Keywords:

Choosability of Graph Powers ★★

Author(s): Noel

Question  (Noel, 2013)   Does there exist a function $ f(k)=o(k^2) $ such that for every graph $ G $, \[\text{ch}\left(G^2\right)\leq f\left(\chi\left(G^2\right)\right)?\]

Keywords: choosability; chromatic number; list coloring; square of a graph

4-regular 4-chromatic graphs of high girth ★★

Author(s): Grunbaum

Problem   Do there exist 4-regular 4-chromatic graphs of arbitrarily high girth?

Keywords: coloring; girth

One-way functions exist ★★★★

Author(s):

Conjecture   One-way functions exist.

Keywords: one way function

Dense rational distance sets in the plane ★★★

Author(s): Ulam

Problem   Does there exist a dense set $ S \subseteq {\mathbb R}^2 $ so that all pairwise distances between points in $ S $ are rational?

Keywords: integral distance; rational distance

FarmVille 2 Unlimited Coins Farm Bucks Cheats 2024 (WORKING IN 5 SECOND) ★★

Author(s):

FarmVille 2 Unlimited Coins Farm Bucks Cheats 2024 (WORKING IN 5 SECOND)

Keywords:

Solution to the Lonely Runner Conjecture ★★

Author(s):

Solution to the Lonely Runner Conjecture

Keywords:

Clash of Clans Gems Cheats without verification (Free) ★★

Author(s):

Clash of Clans Gems Cheats without verification (Free)

Keywords:

Mapping planar graphs to odd cycles ★★★

Author(s): Jaeger

Conjecture   Every planar graph of girth $ \ge 4k $ has a homomorphism to $ C_{2k+1} $.

Keywords: girth; homomorphism; planar graph

Rank vs. Genus ★★★

Author(s): Johnson

Question   Is there a hyperbolic 3-manifold whose fundamental group rank is strictly less than its Heegaard genus? How much can the two differ by?

Keywords:

Earth-Moon Problem ★★

Author(s): Ringel

Problem   What is the maximum number of colours needed to colour countries such that no two countries sharing a common border have the same colour in the case where each country consists of one region on earth and one region on the moon ?

Keywords:

REAL* Free!! Match Masters Coins Cheats Trick 2024 ★★

Author(s):

REAL* Free!! Match Masters Coins Cheats Trick 2024

Keywords:

Lindelöf hypothesis ★★

Author(s): Lindelöf

Conjecture   For any $ \epsilon>0 $ $$\zeta\left(\frac12 + it\right) \mbox{ is }\mathcal{O}(t^\epsilon).$$

Since $ \epsilon $ can be replaced by a smaller value, we can also write the conjecture as, for any positive $ \epsilon $, $$\zeta\left(\frac12 + it\right) \mbox{ is }o(t^\varepsilon).$$

Keywords: Riemann Hypothesis; zeta

The Sims Mobile Cheats Generator Free 2024 No Verification Android iOS (tips codes) ★★

Author(s):

The Sims Mobile Cheats Generator Free 2024 No Verification Android iOS (tips codes)

Keywords:

Unit vector flows ★★

Author(s): Jain

Conjecture   For every graph $ G $ without a bridge, there is a flow $ \phi : E(G) \rightarrow S^2 = \{ x \in {\mathbb R}^3 : |x| = 1 \} $.

Conjecture   There exists a map $ q:S^2 \rightarrow \{-4,-3,-2,-1,1,2,3,4\} $ so that antipodal points of $ S^2 $ receive opposite values, and so that any three points which are equidistant on a great circle have values which sum to zero.

Keywords: nowhere-zero flow

Cooking Fever Cheats Generator Android Ios No Survey 2024 (NEW) ★★

Author(s):

Cooking Fever Cheats Generator Android Ios No Survey 2024 (NEW)

Keywords:

The Ultimate Guide to Simpsons Tapped Out Cheats: Unlocking Donuts and Cash ★★

Author(s):

Conjecture  

Keywords:

The Erdös-Hajnal Conjecture ★★★

Author(s): Erdos; Hajnal

Conjecture   For every fixed graph $ H $, there exists a constant $ \delta(H) $, so that every graph $ G $ without an induced subgraph isomorphic to $ H $ contains either a clique or an independent set of size $ |V(G)|^{\delta(H)} $.

Keywords: induced subgraph

Yu Gi Oh Duel Links Cheats Generator 2024 (safe and working) ★★

Author(s):

Yu Gi Oh Duel Links Cheats Generator 2024 (safe and working)

Keywords:

Dice Dreams Cheats Generator Get Free Dice Dreams Cheats Generator 2024 (Brand New) ★★

Author(s):

Dice Dreams Cheats Generator Get Free Dice Dreams Cheats Generator 2024 (Brand New)

Keywords:

Asymptotic Distribution of Form of Polyhedra ★★

Author(s): Rüdinger

Problem   Consider the set of all topologically inequivalent polyhedra with $ k $ edges. Define a form parameter for a polyhedron as $ \beta:= v/(k+2) $ where $ v $ is the number of vertices. What is the distribution of $ \beta $ for $ k \to \infty $?

Keywords: polyhedral graphs, distribution

Free Generator Matchington Mansion Working Stars Coins Cheats (Matchington Mansion Generator) ★★

Author(s):

Free Generator Matchington Mansion Working Stars Coins Cheats (Matchington Mansion Generator)

Keywords: