Problem The valency-variety of a graph is the number of different degrees in . Is the chromatic number of any graph with at least two vertices greater than
Problem Let be a graph, a countable end of , and an infinite set of pairwise disjoint -rays in . Prove that there is a set of pairwise disjoint -rays that devours such that the set of starting vertices of rays in equals the set of starting vertices of rays in .
Conjecture If is a cubic graph not containing a triangle, then it is possible to color the edges of by five colors, so that the complement of every color class is a bipartite graph.
Problem Let be natural numbers with . It follows from the pigeon-hole principle that there exist distinct subsets with . Is it possible to find such a pair in polynomial time?
Problem Let be a -dimensional smooth submanifold of , diffeomorphic to . By the Jordan-Brouwer separation theorem, separates into the union of two compact connected -manifolds which share as a common boundary. The Schoenflies problem asks, are these -manifolds diffeomorphic to ? ie: is unknotted?
Let be a set, be the set of filters on ordered reverse to set-theoretic inclusion, be the set of principal filters on , let be an index set. Consider the filtrator .
Conjecture If is a completary multifuncoid of the form , then is a completary multifuncoid of the form .
See below for definition of all concepts and symbols used to in this conjecture.
Refer to this Web site for the theory which I now attempt to generalize.
An oriented colouring of an oriented graph is assignment of colours to the vertices such that no two arcs receive ordered pairs of colours and . It is equivalent to a homomorphism of the digraph onto some tournament of order .
A -page book embedding of consists of a linear order of and a (non-proper) -colouring of such that edges with the same colour do not cross with respect to . That is, if for some edges , then and receive distinct colours.
One can think that the vertices are placed along the spine of a book, and the edges are drawn without crossings on the pages of the book.
The book thickness of , denoted by bt is the minimum integer for which there is a -page book embedding of .
Let be the graph obtained by subdividing each edge of exactly once.
Conjecture There is a function such that for every graph ,
Conjecture For which values of and are there bi-colored graphs on vertices and different colors with the property that all the monochromatic colorings have unit weight, and every other coloring cancels out?
Conjecture For , let be the statement that given any exact -coloring of the edges of a complete countably infinite graph (that is, a coloring with colors all of which must be used at least once), there exists an exactly -colored countably infinite complete subgraph. Then is true if and only if , , or .
Conjecture Denote by the number of non-Hamiltonian 3-regular graphs of size , and similarly denote by the number of non-Hamiltonian 3-regular 1-connected graphs of size .