Schönheim, J.


Combinatorial covering designs

Author(s): Gordon; Mills; Rödl; Schönheim

A $ (v, k, t) $ covering design, or covering, is a family of $ k $-subsets, called blocks, chosen from a $ v $-set, such that each $ t $-subset is contained in at least one of the blocks. The number of blocks is the covering’s size, and the minimum size of such a covering is denoted by $ C(v, k, t) $.

Problem   Find a closed form, recurrence, or better bounds for $ C(v,k,t) $. Find a procedure for constructing minimal coverings.

Keywords: recreational mathematics

Syndicate content