![](/files/happy5.png)
Let be a graph and
. The graph
is defined to be the
-power of the
-subdivision of
. In other words,
.
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ \Delta(G)\geq 2 $](/files/tex/25c622d02e81b413d70fba0eb49b1ca09ad2ee1b.png)
![$ \chi(G^{\frac{3}{3}})\leq 2\Delta(G)+1 $](/files/tex/77f35e23639197d1972bd2a477a135f33ef44731.png)
Bibliography
[1] Mahsa Mozafari-Nia and M. N. Iradmusa, Simultaneous coloring of vertices and incidences of graphs, Australasian Journal of Combinatorics, Vol. 85, Mo. 3, pp. 287-307, 2023.
[2] Mahsa Mozafari-Nia and M. N. Iradmusa, Simultaneous coloring of vertices and incidences of outerplanar graphs, Electronic Journal of Graph Theory and Applications, Vol.11, No.1, pp.245-262, 2023.
[3] Mahsa Mozafari-Nia and M. N. Iradmusa, A note on coloring of 3/3-power of subquartic graphs, Australasian Journal of Combinatorics, Vol. 79, No. 3, pp. 454-460, 2021.
[4] M. N. Iradmusa, A short proof of 7-colorability of 3/3-power of subcubic graphs, Iranian Journal of Science and Technology, Transactions A: Science, Vol. 44, No. 1, pp. 225-226, 2020.
* indicates original appearance(s) of problem.