Note that the above is a generalization of monotone Galois connections (with and replaced with suprema and infima).
Then we have the following diagram:
What is at the node "other" in the diagram is unknown.
Conjecture "Other" is .
Question What repeated applying of and to "other" leads to? Particularly, does repeated applying and/or to the node "other" lead to finite or infinite sets?
Conjecture There is an integer-valued function such that if is any -connected graph and and are any two vertices of , then there exists an induced path with ends and such that is -connected.
Begin with the generating function for unrestricted partitions:
(1+x+x^2+...)(1+x^2+x^4+...)(1+x^3+x^6+...)...
Now change some of the plus signs to minus signs. The resulting series will have coefficients congruent, mod 2, to the coefficients of the generating series for unrestricted partitions. I conjecture that the signs may be chosen such that all the coefficients of the series are either 1, -1, or zero.
Let be a set of points in the plane. Two points and in are visible with respect to if the line segment between and contains no other point in .
Conjecture For all integers there is an integer such that every set of at least points in the plane contains at least collinear points or pairwise visible points.
Conjecture For every prime , there is a constant (possibly ) so that the union (as multisets) of any bases of the vector space contains an additive basis.
Question What is the least integer such that every set of at least points in the plane contains collinear points or a subset of points in general position (no three collinear)?
Conjecture Let be a finite family of finite sets, not all empty, that is closed under taking unions. Then there exists such that is an element of at least half the members of .
Throughout this post, by projective plane we mean the set of all lines through the origin in .
Definition Say that a subset of the projective plane is octahedral if all lines in pass through the closure of two opposite faces of a regular octahedron centered at the origin.
Definition Say that a subset of the projective plane is weakly octahedral if every set such that is octahedral.
Conjecture Suppose that the projective plane can be partitioned into four sets, say and such that each set is weakly octahedral. Then each is octahedral.
Problem What is the maximum number of colours needed to colour countries such that no two countries sharing a common border have the same colour in the case where each country consists of one region on earth and one region on the moon ?
Question \item Does hold over graphs of bounded tree-width? \item Is included in over graphs? \item Does have a 0-1 law? \item Are properties of Hanf-local? \item Is there a logic (with an effective syntax) that captures ?
Problem Is there a minimum integer such that the vertices of any digraph with minimum outdegree can be partitioned into two classes so that the minimum outdegree of the subgraph induced by each class is at least ?
Conjecture A Fermat prime is a Fermat number that is prime. The only known Fermat primes are F_0 =3,F_1=5,F_2=17,F_3 =257 ,F_4=65537 It is unknown if other fermat primes exist.
Conjecture Let be a simple graph with vertices and list chromatic number . Suppose that and each vertex of is assigned a list of colors. Then at least vertices of can be colored from these lists.