Conjecture Is it possible to color edges of the complete graph using colors, so that the coloring is proper and no 4-cycle and no 4-edge path is using only two colors?
Equivalently: is the star chromatic index of linear in ?
Problem Given a link in , let the symmetry group of be denoted ie: isotopy classes of diffeomorphisms of which preserve , where the isotopies are also required to preserve .
Now let be a hyperbolic link. Assume has the further `Brunnian' property that there exists a component of such that is the unlink. Let be the subgroup of consisting of diffeomorphisms of which preserve together with its orientation, and which preserve the orientation of .
There is a representation given by restricting the diffeomorphism to the . It's known that is always a cyclic group. And is a signed symmetric group -- the wreath product of a symmetric group with .
Let be a set, be the set of filters on ordered reverse to set-theoretic inclusion, be the set of principal filters on , let be an index set. Consider the filtrator .
Conjecture If is a completary multifuncoid of the form , then is a completary multifuncoid of the form .
See below for definition of all concepts and symbols used to in this conjecture.
Refer to this Web site for the theory which I now attempt to generalize.
Problem Given two codes , their Tensor Product is the code that consists of the matrices whose rows are codewords of and whose columns are codewords of . The product is said to be robust if whenever a matrix is far from , the rows (columns) of are far from (, respectively).
The problem is to give a characterization of the pairs whose tensor product is robust.
We say that a set is -universal if every vertex planar graph can be drawn in the plane so that each vertex maps to a distinct point in , and all edges are (non-intersecting) straight line segments.
Question Does there exist an -universal set of size ?
Conjecture Given any complex numbers which are linearly independent over the rational numbers , then the extension field has transcendence degree of at least over .
Conjecture For every graph without a bridge, there is a flow .
Conjecture There exists a map so that antipodal points of receive opposite values, and so that any three points which are equidistant on a great circle have values which sum to zero.
Let be a positive integer. We say that a graph is strongly -colorable if for every partition of the vertices to sets of size at most there is a proper -coloring of in which the vertices in each set of the partition have distinct colors.
Conjecture If is the maximal degree of a graph , then is strongly -colorable.
Conjecture Is the approximation ratio for the Maximum Edge Disjoint Paths (MaxEDP) or the Maximum Integer Multiflow problem (MaxIMF) bounded by a constant in -outerplanar graphs or tree-width graphs?
Conjecture If is a cubic graph not containing a triangle, then it is possible to color the edges of by five colors, so that the complement of every color class is a bipartite graph.
Conjecture There exists a fixed constant so that every abelian group has a subset with so that the Cayley graph has no clique or independent set of size .
Conjecture Let be the complete funcoid corresponding to the usual topology on extended real line . Let be the order on this set. Then is a complete funcoid.
Proposition It is easy to prove that is the infinitely small right neighborhood filter of point .
If proved true, the conjecture then can be generalized to a wider class of posets.
Problem Let be a -dimensional smooth submanifold of , diffeomorphic to . By the Jordan-Brouwer separation theorem, separates into the union of two compact connected -manifolds which share as a common boundary. The Schoenflies problem asks, are these -manifolds diffeomorphic to ? ie: is unknotted?