Importance: Medium ✭✭
Author(s): Porton, Victor
Subject: Topology
Recomm. for undergrads: no
Posted by: porton
on: September 2nd, 2013
Conjecture   For composable reloids $ f $ and $ g $ it holds
    \item $ \operatorname{Compl} ( g \circ f) = ( \operatorname{Compl} g) \circ f $ if $ f $ is a co-complete reloid; \item $ \operatorname{CoCompl} ( f \circ g) = f \circ \operatorname{CoCompl} g $ if $ f $ is a complete reloid; \item $ \operatorname{CoCompl} ( ( \operatorname{Compl} g) \circ f) = \operatorname{Compl} ( g \circ   ( \operatorname{CoCompl} f)) = ( \operatorname{Compl} g) \circ ( \operatorname{CoCompl} f) $; \item $ \operatorname{Compl} ( g \circ ( \operatorname{Compl} f)) = \operatorname{Compl} ( g \circ   f) $; \item $ \operatorname{CoCompl} ( ( \operatorname{CoCompl} g) \circ f) = \operatorname{CoCompl} ( g   \circ f) $.

Well, in fact this is three separate problems (if we count dual formulas as one formula), but I am lazy to create three pages for them.

This conjecture is inspired by the proven fact that the above formulas hold for every composable funcoids $ f $ and $ g $ (instead of reloids). Properties of reloids are expected to be similar to properties of funcoids.

http://www.packersandmoverschandigarh.co.in/
http://www.packersandmoversjaipur.co.in/
http://www.packersandmoversinhyderabad.co.in/
http://www.packersandmoversinbangalore.co.in/


* indicates original appearance(s) of problem.

Reply

Comments are limited to a maximum of 1000 characters.
More information about formatting options