![](/files/happy5.png)
Conjecture For composable reloids
and
it holds
![$ f $](/files/tex/43374150a8a220f67049937b9790b7d28eb17fb9.png)
![$ g $](/files/tex/4239ee4145983e1d8ad375f0606cc7140bce36a3.png)
- \item
![$ \operatorname{Compl} ( g \circ f) = ( \operatorname{Compl} g) \circ f $](/files/tex/0844704618d467ae0507a89bdb4b215b28d57759.png)
![$ f $](/files/tex/43374150a8a220f67049937b9790b7d28eb17fb9.png)
![$ \operatorname{CoCompl} ( f \circ g) = f \circ \operatorname{CoCompl} g $](/files/tex/91a46d5da19358329c8cdb7351eae9cdb03c2764.png)
![$ f $](/files/tex/43374150a8a220f67049937b9790b7d28eb17fb9.png)
![$ \operatorname{CoCompl} ( ( \operatorname{Compl} g) \circ f) = \operatorname{Compl} ( g \circ ( \operatorname{CoCompl} f)) = ( \operatorname{Compl} g) \circ ( \operatorname{CoCompl} f) $](/files/tex/92e3ac66e1ae6505f78e9f443665d1bcb234fe13.png)
![$ \operatorname{Compl} ( g \circ ( \operatorname{Compl} f)) = \operatorname{Compl} ( g \circ f) $](/files/tex/528dc0c7455fad4558f8b970c989e96990663021.png)
![$ \operatorname{CoCompl} ( ( \operatorname{CoCompl} g) \circ f) = \operatorname{CoCompl} ( g \circ f) $](/files/tex/61a4422f23782d6433a39d5ed6a48dd554f3d16f.png)
Well, in fact this is three separate problems (if we count dual formulas as one formula), but I am lazy to create three pages for them.
This conjecture is inspired by the proven fact that the above formulas hold for every composable funcoids and
(instead of reloids). Properties of reloids are expected to be similar to properties of funcoids.
http://www.packersandmoverschandigarh.co.in/
http://www.packersandmoversjaipur.co.in/
http://www.packersandmoversinhyderabad.co.in/
http://www.packersandmoversinbangalore.co.in/
Bibliography
* indicates original appearance(s) of problem.