Search



Results 1-20 of 43


Text loans@http://www.loansintheuk.co.uk/text-loans.html ★★

Author(s):

12 month loans, 12 month payday loans, text loans, same payday loans

Keywords:

Choosability of Graph Powers ★★

Author(s): Noel

Question  (Noel, 2013)   Does there exist a function $ f(k)=o(k^2) $ such that for every graph $ G $, \[\text{ch}\left(G^2\right)\leq f\left(\chi\left(G^2\right)\right)?\]

Keywords: choosability; chromatic number; list coloring; square of a graph

Bounding the on-line choice number in terms of the choice number ★★

Author(s): Zhu

Question   Are there graphs for which $ \text{ch}^{\text{OL}}-\text{ch} $ is arbitrarily large?

Keywords: choosability; list coloring; on-line choosability

Choice Number of k-Chromatic Graphs of Bounded Order ★★

Author(s): Noel

Conjecture   If $ G $ is a $ k $-chromatic graph on at most $ mk $ vertices, then $ \text{ch}(G)\leq \text{ch}(K_{m*k}) $.

Keywords: choosability; complete multipartite graph; list coloring

Order-invariant queries ★★

Author(s): Segoufin

Question  
    \item Does $ {<}\text{-invariant\:FO} = \text{FO} $ hold over graphs of bounded tree-width? \item Is $ {<}\text{-invariant\:FO} $ included in $ \text{MSO} $ over graphs? \item Does $ {<}\text{-invariant\:FO} $ have a 0-1 law? \item Are properties of $ {<}\text{-invariant\:FO} $ Hanf-local? \item Is there a logic (with an effective syntax) that captures $ {<}\text{-invariant\:FO} $?

Keywords: Effective syntax; FMT12-LesHouches; Locality; MSO; Order invariance

Fractional Hadwiger ★★

Author(s): Harvey; Reed; Seymour; Wood

Conjecture   For every graph $ G $,
(a) $ \chi_f(G)\leq\text{had}(G) $
(b) $ \chi(G)\leq\text{had}_f(G) $
(c) $ \chi_f(G)\leq\text{had}_f(G) $.

Keywords: fractional coloring, minors

Weak saturation of the cube in the clique

Author(s): Morrison; Noel

Problem  

Determine $ \text{wsat}(K_n,Q_3) $.

Keywords: bootstrap percolation; hypercube; Weak saturation

Shuffle-Exchange Conjecture (graph-theoretic form) ★★★

Author(s): Beneš; Folklore; Stone

Given integers $ k,n \ge 2 $, the 2-stage Shuffle-Exchange graph/network, denoted $ \text{SE}(k,n) $, is the simple $ k $-regular bipartite graph with the ordered pair $ (U,V) $ of linearly labeled parts $ U:=\{u_0,\dots,u_{t-1}\} $ and $ V:=\{v_0,\dots,v_{t-1}\} $, where $ t:=k^{n-1} $, such that vertices $ u_i $ and $ v_j $ are adjacent if and only if $ (j - ki) \text{ mod } t < k $ (see Fig.1).

Given integers $ k,n,r \ge 2 $, the $ r $-stage Shuffle-Exchange graph/network, denoted $ (\text{SE}(k,n))^{r-1} $, is the proper (i.e., respecting all the orders) concatenation of $ r-1 $ identical copies of $ \text{SE}(k,n) $ (see Fig.1).

Let $ r(k,n) $ be the smallest integer $ r\ge 2 $ such that the graph $ (\text{SE}(k,n))^{r-1} $ is rearrangeable.

Problem   Find $ r(k,n) $.
Conjecture   $ r(k,n)=2n-1 $.

Keywords:

Are different notions of the crossing number the same? ★★★

Author(s): Pach; Tóth

Problem   Does the following equality hold for every graph $ G $? \[ \text{pair-cr}(G) = \text{cr}(G) \]

The crossing number $ \text{cr}(G) $ of a graph $ G $ is the minimum number of edge crossings in any drawing of $ G $ in the plane. In the pairwise crossing number $ \text{pair-cr}(G) $, we minimize the number of pairs of edges that cross.

Keywords: crossing number; pair-crossing number

Strong edge colouring conjecture ★★

Author(s): Erdos; Nesetril

A strong edge-colouring of a graph $ G $ is a edge-colouring in which every colour class is an induced matching; that is, any two vertices belonging to distinct edges with the same colour are not adjacent. The strong chromatic index $ s\chi'(G) $ is the minimum number of colours in a strong edge-colouring of $ G $.

Conjecture   $$s\chi'(G) \leq \frac{5\Delta^2}{4}, \text{if $\Delta$ is even,}$$ $$s\chi'(G) \leq \frac{5\Delta^2-2\Delta +1}{4},&\text{if $\Delta$ is odd.}$$

Keywords:

Circular choosability of planar graphs

Author(s): Mohar

Let $ G = (V, E) $ be a graph. If $ p $ and $ q $ are two integers, a $ (p,q) $-colouring of $ G $ is a function $ c $ from $ V $ to $ \{0,\dots,p-1\} $ such that $ q \le |c(u)-c(v)| \le p-q $ for each edge $ uv\in E $. Given a list assignment $ L $ of $ G $, i.e.~a mapping that assigns to every vertex $ v $ a set of non-negative integers, an $ L $-colouring of $ G $ is a mapping $ c : V \to N $ such that $ c(v)\in L(v) $ for every $ v\in V $. A list assignment $ L $ is a $ t $-$ (p,q) $-list-assignment if $ L(v) \subseteq \{0,\dots,p-1\} $ and $ |L(v)| \ge tq $ for each vertex $ v \in V $ . Given such a list assignment $ L $, the graph G is $ (p,q) $-$ L $-colourable if there exists a $ (p,q) $-$ L $-colouring $ c $, i.e. $ c $ is both a $ (p,q) $-colouring and an $ L $-colouring. For any real number $ t \ge 1 $, the graph $ G $ is $ t $-$ (p,q) $-choosable if it is $ (p,q) $-$ L $-colourable for every $ t $-$ (p,q) $-list-assignment $ L $. Last, $ G $ is circularly $ t $-choosable if it is $ t $-$ (p,q) $-choosable for any $ p $, $ q $. The circular choosability (or circular list chromatic number or circular choice number) of G is $$cch(G) := \inf\{t \ge 1 : G \text{ is circularly $t$-choosable}\}.$$

Problem   What is the best upper bound on circular choosability for planar graphs?

Keywords: choosability; circular colouring; planar graphs

Alexa's Conjecture on Primality ★★

Author(s): Alexa

Definition   Let $ r_i $ be the unique integer (with respect to a fixed $ p\in\mathbb{N} $) such that

$$(2i+1)^{p-1} \equiv r_i \pmod p ~~\text{ and } ~ 0 \le r_i < p. $$

Conjecture   A natural number $ p \ge 8 $ is a prime iff $$ \displaystyle \sum_{i=1}^{\left \lfloor \frac{\sqrt[3]p}{2} \right \rfloor} r_i = \left \lfloor \frac{\sqrt[3]p}{2} \right \rfloor $$

Keywords: primality

Book Thickness of Subdivisions ★★

Author(s): Blankenship; Oporowski

Let $ G $ be a finite undirected simple graph.

A $ k $-page book embedding of $ G $ consists of a linear order $ \preceq $ of $ V(G) $ and a (non-proper) $ k $-colouring of $ E(G) $ such that edges with the same colour do not cross with respect to $ \preceq $. That is, if $ v\prec x\prec w\prec y $ for some edges $ vw,xy\in E(G) $, then $ vw $ and $ xy $ receive distinct colours.

One can think that the vertices are placed along the spine of a book, and the edges are drawn without crossings on the pages of the book.

The book thickness of $ G $, denoted by bt$ (G) $ is the minimum integer $ k $ for which there is a $ k $-page book embedding of $ G $.

Let $ G' $ be the graph obtained by subdividing each edge of $ G $ exactly once.

Conjecture   There is a function $ f $ such that for every graph $ G $, $$   \text{bt}(G) \leq f( \text{bt}(G') )\enspace.   $$

Keywords: book embedding; book thickness

Monadic second-order logic with cardinality predicates ★★

Author(s): Courcelle

The problem concerns the extension of Monadic Second Order Logic (over a binary relation representing the edge relation) with the following atomic formulas:

    \item $ \text{``}\,\mathrm{Card}(X) = \mathrm{Card}(Y)\,\text{''} $ \item $ \text{``}\,\mathrm{Card}(X) \text{ belongs to } A\,\text{''} $

where $ A $ is a fixed recursive set of integers.

Let us fix $ k $ and a closed formula $ F $ in this language.

Conjecture   Is it true that the validity of $ F $ for a graph $ G $ of tree-width at most $ k $ can be tested in polynomial time in the size of $ G $?

Keywords: bounded tree width; cardinality predicates; FMT03-Bedlewo; MSO

On-Line Ohba's Conjecture ★★

Author(s): Huang; Wong; Zhu

Conjecture   If $ |V(G)|\leq 2\chi(G) $, then the on-line choice number of $ G $ is equal to $ \chi(G) $.

Keywords: choosability; list coloring; on-line choosability

Choice number of complete multipartite graphs with parts of size 4

Author(s):

Question   What is the choice number of $ K_{4*k} $ for general $ k $?

Keywords: choosability; complete multipartite graph; list coloring

Samsung Galaxy S2 Bargains: Take hold of most exclusive offers and also rewards@http://www.galaxyseries.co.uk ★★

Author(s):

Due to the completely new amazing cell gadget, Samsung offers collaborated together with most top cell system services to provide very best on the phone offers on the people. These types of offers include the least expensive of methods allow you procure this particular exclusive sensational convenient gadget by Samsung at affordable conditions.

Keywords:

Sidorenko's Conjecture ★★★

Author(s): Sidorenko

Conjecture   For any bipartite graph $ H $ and graph $ G $, the number of homomorphisms from $ H $ to $ G $ is at least $ \left(\frac{2|E(G)|}{|V(G)|^2}\right)^{|E(H)|}|V(G)|^{|V(H)|} $.

Keywords: density problems; extremal combinatorics; homomorphism

Turán Problem for $10$-Cycles in the Hypercube ★★

Author(s): Erdos

Problem   Bound the extremal number of $ C_{10} $ in the hypercube.

Keywords: cycles; extremal combinatorics; hypercube

Saturation in the Hypercube ★★

Author(s): Morrison; Noel; Scott

Question   What is the saturation number of cycles of length $ 2\ell $ in the $ d $-dimensional hypercube?

Keywords: cycles; hypercube; minimum saturation; saturation