
The stubborn list partition problem ★★
Author(s): Cameron; Eschen; Hoang; Sritharan
Problem Does there exist a polynomial time algorithm which takes as input a graph
and for every vertex
a subset
of
, and decides if there exists a partition of
into
so that
only if
and so that
are independent,
is a clique, and there are no edges between
and
?












Keywords: list partition; polynomial algorithm
What is the largest graph of positive curvature? ★
Problem What is the largest connected planar graph of minimum degree 3 which has everywhere positive combinatorial curvature, but is not a prism or antiprism?
Keywords: curvature; planar graph
Few subsequence sums in Z_n x Z_n ★★
Conjecture For every
, the sequence in
consisting of
copes of
and
copies of
has the fewest number of distinct subsequence sums over all zero-free sequences from
of length
.








Keywords: subsequence sum; zero sum
Olson's Conjecture ★★
Author(s): Olson
Conjecture If
is a sequence of elements from a multiplicative group of order
, then there exist
so that
.




Keywords: zero sum
Highly connected graphs with no K_n minor ★★★
Author(s): Thomas
Problem Is it true for all
, that every sufficiently large
-connected graph without a
minor has a set of
vertices whose deletion results in a planar graph?




Keywords: connectivity; minor
The Alon-Tarsi basis conjecture ★★
Author(s): Alon; Linial; Meshulam
Conjecture If
are invertible
matrices with entries in
for a prime
, then there is a
submatrix
of
so that
is an AT-base.






![$ [B_1 B_2 \ldots B_p] $](/files/tex/86661dc2948aeca789b4392c2e2a9cbf7d96f735.png)

Keywords: additive basis; matrix
The permanent conjecture ★★
Author(s): Kahn
Conjecture If
is an invertible
matrix, then there is an
submatrix
of
so that
is nonzero.




![$ [A A] $](/files/tex/d1e9d82c656535b507686183e640178057fae455.png)

Keywords: invertible; matrix; permanent
The additive basis conjecture ★★★
Author(s): Jaeger; Linial; Payan; Tarsi
Conjecture For every prime
, there is a constant
(possibly
) so that the union (as multisets) of any
bases of the vector space
contains an additive basis.





Keywords: additive basis; matrix