
Meshulam, Roy
The Alon-Tarsi basis conjecture ★★
Author(s): Alon; Linial; Meshulam
Conjecture If
are invertible
matrices with entries in
for a prime
, then there is a
submatrix
of
so that
is an AT-base.






![$ [B_1 B_2 \ldots B_p] $](/files/tex/86661dc2948aeca789b4392c2e2a9cbf7d96f735.png)

Keywords: additive basis; matrix
