list partition


The stubborn list partition problem ★★

Author(s): Cameron; Eschen; Hoang; Sritharan

Problem   Does there exist a polynomial time algorithm which takes as input a graph $ G $ and for every vertex $ v \in V(G) $ a subset $ \ell(v) $ of $ \{1,2,3,4\} $, and decides if there exists a partition of $ V(G) $ into $ \{A_1,A_2,A_3,A_4\} $ so that $ v \in A_i $ only if $ i \in \ell(v) $ and so that $ A_1,A_2 $ are independent, $ A_4 $ is a clique, and there are no edges between $ A_1 $ and $ A_3 $?

Keywords: list partition; polynomial algorithm

Syndicate content