Recent Activity

Fire Kirin Generator Cheats 2024 (FREE!) ★★

Author(s):

Fire Kirin Generator Cheats 2024 (FREE!)

Keywords:

Call Of Duty Mobile Generator Cheats No Human Verification (Without Surveys) ★★

Author(s):

Call Of Duty Mobile Generator Cheats No Human Verification (Without Surveys)

Keywords:

Family Island Generator Cheats 2024 Generator Cheats Tested On Android Ios (extra) ★★

Author(s):

Family Island Generator Cheats 2024 Generator Cheats Tested On Android Ios (extra)

Keywords:

SimCity BuildIt Generator Cheats Unlimited Resources No Jailbreak (Premium Orginal Generator) ★★

Author(s):

SimCity BuildIt Generator Cheats Unlimited Resources No Jailbreak (Premium Orginal Generator)

Keywords:

PK XD Generator Cheats 2024 Generator Cheats Tested On Android Ios (WORKING TIPS) ★★

Author(s):

PK XD Generator Cheats 2024 Generator Cheats Tested On Android Ios (WORKING TIPS)

Keywords:

MovieStarPlanet Generator Cheats 2024 (WORKING IN 5 SECOND) ★★

Author(s):

MovieStarPlanet Generator Cheats 2024 (WORKING IN 5 SECOND)

Keywords:

Raid Shadow Legends Generator Cheats Free 2024 in 5 minutes (New Generator Cheats Raid Shadow Legends) ★★

Author(s):

Raid Shadow Legends Generator Cheats Free 2024 in 5 minutes (New Generator Cheats Raid Shadow Legends)

Keywords:

Hello ★★

Author(s):

Hello

http://www.openproblemgarden.org/op/hello

Keywords:

Chords of longest cycles ★★★

Author(s): Thomassen

Conjecture   If $ G $ is a 3-connected graph, every longest cycle in $ G $ has a chord.

Keywords: chord; connectivity; cycle

Do any three longest paths in a connected graph have a vertex in common? ★★

Author(s): Gallai

Conjecture   Do any three longest paths in a connected graph have a vertex in common?

Keywords:

Chromatic number of $\frac{3}{3}$-power of graph ★★

Author(s):

Let $ G $ be a graph and $ m,n\in \mathbb{N} $. The graph $ G^{\frac{m}{n}} $ is defined to be the $ m $-power of the $ n $-subdivision of $ G $. In other words, $ G^{\frac{m}{n}}=(G^{\frac{1}{n}})^m $.

Conjecture   Let $ G $ be a graph with $ \Delta(G)\geq 2 $. Then $ \chi(G^{\frac{3}{3}})\leq 2\Delta(G)+1 $.

Keywords:

3-Edge-Coloring Conjecture ★★★

Author(s): Arthur; Hoffmann-Ostenhof

Conjecture   Suppose $ G $ with $ |V(G)|>2 $ is a connected cubic graph admitting a $ 3 $-edge coloring. Then there is an edge $ e \in E(G) $ such that the cubic graph homeomorphic to $ G-e $ has a $ 3 $-edge coloring.

Keywords: 3-edge coloring; 4-flow; removable edge

r-regular graphs are not uniquely hamiltonian. ★★★

Author(s): Sheehan

Conjecture   If $ G $ is a finite $ r $-regular graph, where $ r > 2 $, then $ G $ is not uniquely hamiltonian.

Keywords: hamiltonian; regular; uniquely hamiltonian

Partition of Complete Geometric Graph into Plane Trees ★★

Author(s):

Conjecture   Every complete geometric graph with an even number of vertices has a partition of its edge set into plane (i.e. non-crossing) spanning trees.

Keywords: complete geometric graph, edge colouring

Smooth 4-dimensional Poincare conjecture ★★★★

Author(s): Poincare; Smale; Stallings

Conjecture   If a $ 4 $-manifold has the homotopy type of the $ 4 $-sphere $ S^4 $, is it diffeomorphic to $ S^4 $?

Keywords: 4-manifold; poincare; sphere

Book Thickness of Subdivisions ★★

Author(s): Blankenship; Oporowski

Let $ G $ be a finite undirected simple graph.

A $ k $-page book embedding of $ G $ consists of a linear order $ \preceq $ of $ V(G) $ and a (non-proper) $ k $-colouring of $ E(G) $ such that edges with the same colour do not cross with respect to $ \preceq $. That is, if $ v\prec x\prec w\prec y $ for some edges $ vw,xy\in E(G) $, then $ vw $ and $ xy $ receive distinct colours.

One can think that the vertices are placed along the spine of a book, and the edges are drawn without crossings on the pages of the book.

The book thickness of $ G $, denoted by bt$ (G) $ is the minimum integer $ k $ for which there is a $ k $-page book embedding of $ G $.

Let $ G' $ be the graph obtained by subdividing each edge of $ G $ exactly once.

Conjecture   There is a function $ f $ such that for every graph $ G $, $$   \text{bt}(G) \leq f( \text{bt}(G') )\enspace.   $$

Keywords: book embedding; book thickness

Primitive pythagorean n-tuple tree ★★

Author(s):

Conjecture   Find linear transformation construction of primitive pythagorean n-tuple tree!

Keywords:

Jacobian Conjecture ★★★

Author(s): Keller

Conjecture   Let $ k $ be a field of characteristic zero. A collection $ f_1,\ldots,f_n $ of polynomials in variables $ x_1,\ldots,x_n $ defines an automorphism of $ k^n $ if and only if the Jacobian matrix is a nonzero constant.

Keywords: Affine Geometry; Automorphisms; Polynomials

Inscribed Square Problem ★★

Author(s): Toeplitz

Conjecture   Does every Jordan curve have 4 points on it which form the vertices of a square?

Keywords: simple closed curve; square

Complete bipartite subgraphs of perfect graphs ★★

Author(s): Fox

Problem   Let $ G $ be a perfect graph on $ n $ vertices. Is it true that either $ G $ or $ \bar{G} $ contains a complete bipartite subgraph with bipartition $ (A,B) $ so that $ |A|, |B| \ge n^{1 - o(1)} $?

Keywords: perfect graph