Hitting every large maximal clique with a stable set ★★

Author(s): King; Rabern

Conjecture   There is a universal constant $ \epsilon>0 $ such that every graph contains a stable set which intersects every maximal clique of size $ (1-\epsilon)(\Delta+1) $.

Conjecture   Every graph contains a stable set which intersects every maximal clique of size $ >\frac{2}{3}(\Delta+1) $.

Keywords: independent set; maximal clique

Extremal problem on the number of tree endomorphism ★★

Author(s): Zhicong Lin

Conjecture   An endomorphism of a graph is a mapping on the vertex set of the graph which preserves edges. Among all the $ n $ vertices' trees, the star with $ n $ vertices has the most endomorphisms, while the path with $ n $ vertices has the least endomorphisms.

Keywords:

Which lattices occur as intervals in subgroup lattices of finite groups? ★★★★

Author(s):

Conjecture  

There exists a finite lattice that is not an interval in the subgroup lattice of a finite group.

Keywords: congruence lattice; finite groups

Special Primes

Author(s): George BALAN

Conjecture   Let $ p $ be a prime natural number. Find all primes $ q\equiv1\left(\mathrm{mod}\: p\right) $, such that $ 2^{\frac{\left(q-1\right)}{p}}\equiv1\left(\mathrm{mod}\: q\right) $.

Keywords:

Hilbert-Smith conjecture ★★

Author(s): David Hilbert; Paul A. Smith

Conjecture   Let $ G $ be a locally compact topological group. If $ G $ has a continuous faithful group action on an $ n $-manifold, then $ G $ is a Lie group.

Keywords: