Strict inequalities for products of filters

Author(s): Porton

Conjecture   $ \mathcal{A} \times^{\mathsf{\ensuremath{\operatorname{RLD}}}}_F \mathcal{B}   \subset \mathcal{A} \ltimes \mathcal{B} \subset \mathcal{A}   \times^{\mathsf{\ensuremath{\operatorname{RLD}}}} \mathcal{B} $ for some filter objects $ \mathcal{A} $, $ \mathcal{B} $. Particularly, is this formula true for $ \mathcal{A} = \mathcal{B} = \Delta \cap \uparrow^{\mathbb{R}} \left( 0 ; +   \infty \right) $?

A weaker conjecture:

Conjecture   $ \mathcal{A} \times^{\mathsf{\ensuremath{\operatorname{RLD}}}}_F \mathcal{B}   \subset \mathcal{A} \ltimes \mathcal{B} $ for some filter objects $ \mathcal{A} $, $ \mathcal{B} $.

Keywords: filter products

Join of oblique products ★★

Author(s): Porton

Conjecture   $ \left( \mathcal{A} \ltimes \mathcal{B} \right) \cup \left( \mathcal{A}   \rtimes \mathcal{B} \right) = \mathcal{A}   \times^{\mathsf{\ensuremath{\operatorname{RLD}}}} \mathcal{B} $ for every filter objects $ \mathcal{A} $, $ \mathcal{B} $.

Keywords: filter; oblique product; reloidal product