![](/files/happy5.png)
Kriesell's Conjecture ★★
Author(s): Kriesell
Conjecture Let
be a graph and let
such that for any pair
there are
edge-disjoint paths from
to
in
. Then
contains
edge-disjoint trees, each of which contains
.
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ T\subseteq V(G) $](/files/tex/0acf1a8ecf3a0737d34c34b8652d10a2c33df19b.png)
![$ u,v\in T $](/files/tex/bbcef09f86563651f02daa6bbae826055f48edfb.png)
![$ 2k $](/files/tex/bded1a5bf39ed2baaf98bd8c04cea4667dd89b58.png)
![$ u $](/files/tex/06183efdad837019eb0937c4e40f9e7beaa2e8d8.png)
![$ v $](/files/tex/96cbd9a16c6a5eab03815b093b08f3b2db614e9a.png)
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ k $](/files/tex/c450c3185f7285cfa0b88d3a903c54f7df601201.png)
![$ T $](/files/tex/79f55d2e1d83a7726c807a70cbe756713b0437b6.png)
Keywords: Disjoint paths; edge-connectivity; spanning trees
2-colouring a graph without a monochromatic maximum clique ★★
Conjecture If
is a non-empty graph containing no induced odd cycle of length at least
, then there is a
-vertex colouring of
in which no maximum clique is monochromatic.
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ 5 $](/files/tex/87f5fe1d4b06035debb52cf2d67802fbfa9cb4ab.png)
![$ 2 $](/files/tex/5271e36bb1c040e0f14061d89cd97d0c86d4e06f.png)
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
Keywords: maximum clique; Partitioning
Distributivity of a lattice of funcoids is not provable without axiom of choice ★
Author(s): Porton
Conjecture Distributivity of the lattice
of funcoids (for arbitrary sets
and
) is not provable in ZF (without axiom of choice).
![$ \mathsf{FCD}(A;B) $](/files/tex/d051d7da40c4a6b1d4234c0f74689d1bc7c994f1.png)
![$ A $](/files/tex/7a8d9782350e8eb5a84c149576d83160492cbdd3.png)
![$ B $](/files/tex/4369e4eb2b0938fb27436a8c4f4a062f83d4d49e.png)
A similar conjecture:
Conjecture
for arbitrary filters
and
on a powerset cannot be proved in ZF (without axiom of choice).
![$ a\setminus^{\ast} b = a\#b $](/files/tex/c6fc3b6da0655ddeaeffe670703a33edcb4650f6.png)
![$ a $](/files/tex/b1d91efbd5571a84788303f1137fb33fe82c43e2.png)
![$ b $](/files/tex/b94226d9717591da8122ae1467eda72a0f35d810.png)
Keywords: axiom of choice; distributive lattice; distributivity; funcoid; reverse math; reverse mathematics; ZF; ZFC