Porton, Victor


Funcoid corresponding to reloid through lattice Gamma ★★

Author(s): Porton

Conjecture   For every reloid $ f $ and $ \mathcal{X} \in \mathfrak{F} (\operatorname{Src} f) $, $ \mathcal{Y} \in \mathfrak{F} (\operatorname{Dst} f) $:
    \item $ \mathcal{X} \mathrel{[(\mathsf{FCD}) f]} \mathcal{Y}   \Leftrightarrow \forall F \in \operatorname{up}^{\Gamma (\operatorname{Src} f ; \operatorname{Dst}   f)} f : \mathcal{X} \mathrel{[F]} \mathcal{Y} $; \item $ \langle (\mathsf{FCD}) f \rangle \mathcal{X} = \bigcap_{F   \in \operatorname{up}^{\Gamma (\operatorname{Src} f ; \operatorname{Dst} f)} f} \langle F \rangle   \mathcal{X} $.

It's proved by me in this online article.

Keywords: funcoid corresponding to reloid

Restricting a reloid to lattice Gamma before converting it into a funcoid ★★

Author(s): Porton

Conjecture   $ (\mathsf{FCD}) f = \bigcap^{\mathsf{FCD}} (\Gamma (A ; B) \cap \operatorname{GR} f) $ for every reloid $ f \in \mathsf{RLD} (A ; B) $.

Keywords: funcoid corresponding to reloid; funcoids; reloids

Inner reloid through the lattice Gamma ★★

Author(s): Porton

Conjecture   $ (\mathsf{RLD})_{\operatorname{in}} f = \bigcap^{\mathsf{RLD}} \operatorname{up}^{\Gamma (\operatorname{Src} f ; \operatorname{Dst} f)} f $ for every funcoid $ f $.

Counter-example: $ (\mathsf{RLD})_{\operatorname{in}} f \sqsubset \bigcap^{\mathsf{RLD}} \operatorname{up}^{\Gamma (\operatorname{Src} f ; \operatorname{Dst} f)} f $ for the funcoid $ f = (=)|_\mathbb{R} $ is proved in this online article.

Keywords: filters; funcoids; inner reloid; reloids

Coatoms of the lattice of funcoids

Author(s): Porton

Problem   Let $ A $ and $ B $ be infinite sets. Characterize the set of all coatoms of the lattice $ \mathsf{FCD}(A;B) $ of funcoids from $ A $ to $ B $. Particularly, is this set empty? Is $ \mathsf{FCD}(A;B) $ a coatomic lattice? coatomistic lattice?

Keywords: atoms; coatoms; funcoids

Direct proof of a theorem about compact funcoids ★★

Author(s): Porton

Conjecture   Let $ f $ is a $ T_1 $-separable (the same as $ T_2 $ for symmetric transitive) compact funcoid and $ g $ is a uniform space (reflexive, symmetric, and transitive endoreloid) such that $ ( \mathsf{\tmop{FCD}}) g = f $. Then $ g = \langle f \times f \rangle^{\ast} \Delta $.

The main purpose here is to find a direct proof of this conjecture. It seems that this conjecture can be derived from the well known theorem about existence of exactly one uniformity on a compact set. But that would be what I call an indirect proof, we need a direct proof instead.

The direct proof may be constructed by correcting all errors an omissions in this draft article.

Direct proof could be better because with it we would get a little more general statement like this:

Conjecture   Let $ f $ be a $ T_1 $-separable compact reflexive symmetric funcoid and $ g $ be a reloid such that
    \item $ ( \mathsf{\tmop{FCD}}) g = f $; \item $ g \circ g^{- 1} \sqsubseteq g $.

Then $ g = \langle f \times f \rangle^{\ast} \Delta $.

Keywords: compact space; compact topology; funcoid; reloid; uniform space; uniformity

Generalized path-connectedness in proximity spaces ★★

Author(s): Porton

Let $ \delta $ be a proximity.

A set $ A $ is connected regarding $ \delta $ iff $ \forall X,Y \in \mathscr{P} A \setminus \{ \emptyset \} : \left( X \cup Y = A \Rightarrow X \mathrel{\delta} Y \right) $.

Conjecture   The following statements are equivalent for every endofuncoid $ \mu $ and a set $ U $:
    \item $ U $ is connected regarding $ \mu $. \item For every $ a, b \in U $ there exists a totally ordered set $ P \subseteq   U $ such that $ \min P = a $, $ \max P = b $, and for every partion $ \{ X, Y \} $ of $ P $ into two sets $ X $, $ Y $ such that $ \forall x \in X, y \in Y : x < y $, we have $ X \mathrel{[ \mu]^{\ast}} Y $.

Keywords: connected; connectedness; proximity space

Every monovalued reloid is metamonovalued ★★

Author(s): Porton

Conjecture   Every monovalued reloid is metamonovalued.

Keywords: monovalued

Every metamonovalued reloid is monovalued ★★

Author(s): Porton

Conjecture   Every metamonovalued reloid is monovalued.

Keywords:

Every metamonovalued funcoid is monovalued ★★

Author(s): Porton

Conjecture   Every metamonovalued funcoid is monovalued.

The reverse is almost trivial: Every monovalued funcoid is metamonovalued.

Keywords: monovalued

Decomposition of completions of reloids ★★

Author(s): Porton

Conjecture   For composable reloids $ f $ and $ g $ it holds
    \item $ \operatorname{Compl} ( g \circ f) = ( \operatorname{Compl} g) \circ f $ if $ f $ is a co-complete reloid; \item $ \operatorname{CoCompl} ( f \circ g) = f \circ \operatorname{CoCompl} g $ if $ f $ is a complete reloid; \item $ \operatorname{CoCompl} ( ( \operatorname{Compl} g) \circ f) = \operatorname{Compl} ( g \circ   ( \operatorname{CoCompl} f)) = ( \operatorname{Compl} g) \circ ( \operatorname{CoCompl} f) $; \item $ \operatorname{Compl} ( g \circ ( \operatorname{Compl} f)) = \operatorname{Compl} ( g \circ   f) $; \item $ \operatorname{CoCompl} ( ( \operatorname{CoCompl} g) \circ f) = \operatorname{CoCompl} ( g   \circ f) $.

Keywords: co-completion; completion; reloid

Syndicate content