Length of surreal product

Author(s): Gonshor

Conjecture   Every surreal number has a unique sign expansion, i.e. function $ f: o\rightarrow \{-, +\} $, where $ o $ is some ordinal. This $ o $ is the length of given sign expansion and also the birthday of the corresponding surreal number. Let us denote this length of $ s $ as $ \ell(s) $.

It is easy to prove that

$$ \ell(s+t) \leq \ell(s)+\ell(t) $$

What about

$$ \ell(s\times t) \leq \ell(s)\times\ell(t) $$

?

Keywords: surreal numbers

Alexa's Conjecture on Primality ★★

Author(s): Alexa

Definition   Let $ r_i $ be the unique integer (with respect to a fixed $ p\in\mathbb{N} $) such that

$$(2i+1)^{p-1} \equiv r_i \pmod p ~~\text{ and } ~ 0 \le r_i < p. $$

Conjecture   A natural number $ p \ge 8 $ is a prime iff $$ \displaystyle \sum_{i=1}^{\left \lfloor \frac{\sqrt[3]p}{2} \right \rfloor} r_i = \left \lfloor \frac{\sqrt[3]p}{2} \right \rfloor $$

Keywords: primality

Giuga's Conjecture on Primality ★★

Author(s): Giuseppe Giuga

Conjecture   $ p $ is a prime iff $ ~\displaystyle \sum_{i=1}^{p-1} i^{p-1} \equiv -1 \pmod p $

Keywords: primality

Sum of prime and semiprime conjecture ★★

Author(s): Geoffrey Marnell

Conjecture   Every even number greater than $ 10 $ can be represented as the sum of an odd prime number and an odd semiprime .

Keywords: prime; semiprime