Weighted colouring of hexagonal graphs. ★★

Author(s): McDiarmid; Reed

Conjecture   There is an absolute constant $ c $ such that for every hexagonal graph $ G $ and vertex weighting $ p:V(G)\rightarrow \mathbb{N} $, $$\chi(G,p) \leq \frac{9}{8}\omega(G,p) + c $$

Keywords:

Colouring the square of a planar graph ★★

Author(s): Wegner

Conjecture   Let $ G $ be a planar graph of maximum degree $ \Delta $. The chromatic number of its square is
    \item at most $ 7 $ if $ \Delta =3 $, \item at most $ \Delta+5 $ if $ 4\leq\Delta\leq 7 $, \item at most $ \left\lfloor\frac32\,\Delta\right\rfloor+1 $ if $ \Delta\ge8 $.

Keywords:

List chromatic number and maximum degree of bipartite graphs ★★

Author(s): Alon

Conjecture   There is a constant $ c $ such that the list chromatic number of any bipartite graph $ G $ of maximum degree $ \Delta $ is at most $ c \log \Delta $.

Keywords:

Hamilton decomposition of prisms over 3-connected cubic planar graphs ★★

Author(s): Alspach; Rosenfeld

Conjecture   Every prism over a $ 3 $-connected cubic planar graph can be decomposed into two Hamilton cycles.

Keywords:

Turán's problem for hypergraphs ★★

Author(s): Turan

Conjecture   Every simple $ 3 $-uniform hypergraph on $ 3n $ vertices which contains no complete $ 3 $-uniform hypergraph on four vertices has at most $ \frac12 n^2(5n-3) $ hyperedges.
Conjecture   Every simple $ 3 $-uniform hypergraph on $ 2n $ vertices which contains no complete $ 3 $-uniform hypergraph on five vertices has at most $ n^2(n-1) $ hyperedges.

Keywords:

4-connected graphs are not uniquely hamiltonian ★★

Author(s): Fleischner

Conjecture   Every $ 4 $-connected graph with a Hamilton cycle has a second Hamilton cycle.

Keywords:

Every prism over a 3-connected planar graph is hamiltonian. ★★

Author(s): Kaiser; Král; Rosenfeld; Ryjácek; Voss

Conjecture   If $ G $ is a $ 3 $-connected planar graph, then $ G\square K_2 $ has a Hamilton cycle.

Keywords: