¿Are critical k-forests tight? ★★

Author(s): Strausz

Conjecture  

Let $ H $ be a $ k $-uniform hypergraph. If $ H $ is a critical $ k $-forest, then it is a $ k $-tree.

Keywords: heterochromatic number

Bigger cycles in cubic graphs ★★

Author(s):

Problem   Let $ G $ be a cyclically 4-edge-connected cubic graph and let $ C $ be a cycle of $ G $. Must there exist a cycle $ C' \neq C $ so that $ V(C) \subseteq V(C') $?

Keywords: cubic; cycle

The intersection of two perfect matchings ★★

Author(s): Macajova; Skoviera

Conjecture   Every bridgeless cubic graph has two perfect matchings $ M_1 $, $ M_2 $ so that $ M_1 \cap M_2 $ does not contain an odd edge-cut.

Keywords: cubic; nowhere-zero flow; perfect matching

Reloid corresponding to funcoid is between outward and inward reloid ★★

Author(s): Porton

Conjecture   For any funcoid $ f $ and reloid $ g $ having the same source and destination \[ ( \mathsf{\tmop{RLD}})_{\tmop{out}} f \subseteq g \subseteq (    \mathsf{\tmop{RLD}})_{\tmop{in}} f \Leftrightarrow ( \mathsf{\tmop{FCD}}) g    = f. \]

Keywords: funcoid; inward reloid; outward reloid; reloid

Distributivity of union of funcoids corresponding to reloids ★★

Author(s): Porton

Conjecture   $ \bigcup \left\langle ( \mathsf{\tmop{FCD}}) \right\rangle S = ( \mathsf{\tmop{FCD}}) \bigcup S $ if $ S\in\mathscr{P}\mathsf{RLD}(A;B) $ is a set of reloids from a set $ A $ to a set $ B $.

Keywords: funcoid; infinite distributivity; reloid