Magic square of squares ★★

Author(s): LaBar

Question   Does there exist a $ 3\times 3 $ magic square composed of distinct perfect squares?

Keywords:

Diophantine quintuple conjecture ★★

Author(s):

Definition   A set of m positive integers $ \{a_1, a_2, \dots, a_m\} $ is called a Diophantine $ m $-tuple if $ a_i\cdot a_j + 1 $ is a perfect square for all $ 1 \leq i < j \leq m $.
Conjecture  (1)   Diophantine quintuple does not exist.

It would follow from the following stronger conjecture [Da]:

Conjecture  (2)   If $ \{a, b, c, d\} $ is a Diophantine quadruple and $ d > \max \{a, b, c\} $, then $ d = a + b + c + 2bc + 2\sqrt{(ab+1)(ac+1)(bc+1)}. $

Keywords:

Inverse Galois Problem ★★★★

Author(s): Hilbert

Conjecture   Every finite group is the Galois group of some finite algebraic extension of $ \mathbb Q $.

Keywords:

On Gersgorin Theorem ★★

Author(s):

Gersgorin theorem states that: all the eigenvalues of $ A=[a_{ij}]\in M_n $ are located in the union of $ n $ discs $ \bigcup\limits_{i=1}^n\{z\in C:|z-a_{ii}|\leq \sum\limits_{j=1,j\neq i}^n|a_{ij}|\} $. For some special matrices, the region can be confined to $ \bigcup\limits_{i=1}^n\{z\in C:|z-a_{ii}|\leq \sum\limits_{j=1,j\neq i}^n|a_{ij}|\}\backslash\{z\in C:|z-a_{kk}|<\sum\limits_{j=1,j\neq k}^n|a_{kj}|\} $ for some $ k $. I wonder if the new region above is valid in general?

Keywords:

trace inequality ★★

Author(s):

Let $ A,B $ be positive semidefinite, by Jensen's inequality, it is easy to see $ [tr(A^s+B^s)]^{\frac{1}{s}}\leq [tr(A^r+B^r)]^{\frac{1}{r}} $, whenever $ s>r>0 $.

What about the $ tr(A^s+B^s)^{\frac{1}{s}}\leq tr(A^r+B^r)^{\frac{1}{r}} $, is it still valid?

Keywords: