
edge coloring
Star chromatic index of complete graphs ★★
Author(s): Dvorak; Mohar; Samal
Conjecture Is it possible to color edges of the complete graph
using
colors, so that the coloring is proper and no 4-cycle and no 4-edge path is using only two colors?


Equivalently: is the star chromatic index of linear in
?
Keywords: complete graph; edge coloring; star coloring
Star chromatic index of cubic graphs ★★
Author(s): Dvorak; Mohar; Samal
The star chromatic index of a graph
is the minimum number of colors needed to properly color the edges of the graph so that no path or cycle of length four is bi-colored.
Question Is it true that for every (sub)cubic graph
, we have
?


Keywords: edge coloring; star coloring
