Vertex Coloring of graph fractional powers

Importance: High ✭✭✭
Author(s): Iradmusa, Moharram
Subject: Graph Theory
Recomm. for undergrads: yes
Posted by: Iradmusa
on: April 23rd, 2011
Conjecture   Let $ G $ be a graph and $ k $ be a positive integer. The $ k- $power of $ G $, denoted by $ G^k $, is defined on the vertex set $ V(G) $, by connecting any two distinct vertices $ x $ and $ y $ with distance at most $ k $. In other words, $ E(G^k)=\{xy:1\leq d_G(x,y)\leq k\} $. Also $ k- $subdivision of $ G $, denoted by $ G^\frac{1}{k} $, is constructed by replacing each edge $ ij $ of $ G $ with a path of length $ k $. Note that for $ k=1 $, we have $ G^\frac{1}{1}=G^1=G $.
Now we can define the fractional power of a graph as follows:
Let $ G $ be a graph and $ m,n\in \mathbb{N} $. The graph $ G^{\frac{m}{n}} $ is defined by the $ m- $power of the $ n- $subdivision of $ G $. In other words $ G^{\frac{m}{n}}\isdef (G^{\frac{1}{n}})^m $.
Conjecture. Let $ G $ be a connected graph with $ \Delta(G)\geq3 $ and $ m $ be a positive integer greater than 1. Then for any positive integer $ n>m $, we have $ \chi(G^{\frac{m}{n}})=\omega(G^\frac{m}{n}) $.
In [1], it was shown that this conjecture is true in some special cases.


[1] Iradmusa, Moharram N., On colorings of graph fractional powers. Discrete Math. 310 (2010), no. 10-11, 1551–1556.

* indicates original appearance(s) of problem.

Needs revision

Note that if K_t is the complete graph on t vertices with t even, then the 2-power of the 2-subdivision of K_t is isomorphic to the total graph of K_t. That is the graph T(K_t) whose vertex set is V(K_t) union E(K_t) and two vertices are adjacent in T(K_t) if their either adjacent or incident in K_t.

clique number of T(K_t) is t + 1 and the chromatic number of T(K_t) is >= t+2.

Comment viewing options

Select your preferred way to display the comments and click "Save settings" to activate your changes.