
Sticky Cantor sets













I borrowed this conjecture from this forum thread.
Certainly I understand this conjecture wrongly: is a subset of a line segment. Consider a homeomorphism which moves all points of
orthogonally to this line segment by
. This would be a solution of this problem. Obviously it is not what is meant.
Indeed I submit the problem to OPG as is in the hope that somebody will correct my wrong understanding and adjust the formulation to not be misunderstood as by me.
Bibliography
* indicates original appearance(s) of problem.
M
"embedded" does not imply that it is still a subset of the line. It just says that it's one-to-one and a homeomorphism with the image. The conjecture requires to prove that there exists a Cantor which cannot be separated from itself, so showing an example where it can be separated is not relevant.
Misunderstanding
Your misunderstanding comes from the definition of a Cantor set. A Cantor set is a set homeomorphic to the usual middle-thirds Cantor set. In general it does not have to lie on a line segment.