Outward reloid of composition vs composition of outward reloids ★★

Author(s): Porton

Conjecture   For every composable funcoids $ f $ and $ g $ $$(\mathsf{RLD})_{\mathrm{out}}(g\circ f)\sqsupseteq(\mathsf{RLD})_{\mathrm{out}}g\circ(\mathsf{RLD})_{\mathrm{out}}f.$$

Keywords: outward reloid

A funcoid related to directed topological spaces ★★

Author(s): Porton

Conjecture   Let $ R $ be the complete funcoid corresponding to the usual topology on extended real line $ [-\infty,+\infty] = \mathbb{R}\cup\{-\infty,+\infty\} $. Let $ \geq $ be the order on this set. Then $ R\sqcap^{\mathsf{FCD}}\mathord{\geq} $ is a complete funcoid.
Proposition   It is easy to prove that $ \langle R\sqcap^{\mathsf{FCD}}\mathord{\geq}\rangle \{x\} $ is the infinitely small right neighborhood filter of point $ x\in[-\infty,+\infty] $.

If proved true, the conjecture then can be generalized to a wider class of posets.

Keywords:

Infinite distributivity of meet over join for a principal funcoid ★★

Author(s): Porton

Conjecture   $ f \sqcap \bigsqcup S = \bigsqcup \langle f \sqcap \rangle^{\ast} S $ for principal funcoid $ f $ and a set $ S $ of funcoids of appropriate sources and destinations.

Keywords: distributivity; principal funcoid

Entourages of a composition of funcoids ★★

Author(s): Porton

Conjecture   $ \forall H \in \operatorname{up} (g \circ f) \exists F \in \operatorname{up} f, G \in \operatorname{up} g : H \sqsupseteq G \circ F $ for every composable funcoids $ f $ and $ g $.

Keywords: composition of funcoids; funcoids

Weak saturation of the cube in the clique

Author(s): Morrison; Noel

Problem  

Determine $ \text{wsat}(K_n,Q_3) $.

Keywords: bootstrap percolation; hypercube; Weak saturation