![](/files/happy5.png)
Upgrading a multifuncoid (Solved)
Let be a set,
be the set of filters on
ordered reverse to set-theoretic inclusion,
be the set of principal filters on
, let
be an index set. Consider the filtrator
.
Conjecture If
is a multifuncoid of the form
, then
is a multifuncoid of the form
.
![$ f $](/files/tex/43374150a8a220f67049937b9790b7d28eb17fb9.png)
![$ \mathfrak{P}^n $](/files/tex/81d0b4bc571faee2e8f352e99db8b54be6f9bb4f.png)
![$ E^{\ast} f $](/files/tex/93b48164cf5af924121c451b6bb17268ae140bae.png)
![$ \mathfrak{F}^n $](/files/tex/34e3ea9e5283eb80b19513453991c07af9c98f8a.png)
See below for definition of all concepts and symbols used to in this conjecture.
Refer to this Web site for the theory which I now attempt to generalize.
I found a really trivial proof of this conjecture. See this my draft article.
Definition A filtrator is a pair
of a poset
and its subset
.
![$ \left( \mathfrak{A}; \mathfrak{Z} \right) $](/files/tex/ec724698dc0160543f8ac2a504055a04020a1057.png)
![$ \mathfrak{A} $](/files/tex/702b76abd81b24daaf0e6bc2a191fb964b09d1b2.png)
![$ \mathfrak{Z} $](/files/tex/1a0a119ad5a02a95e079e5ab5e33e3b1a5052f73.png)
Having fixed a filtrator, we define:
Definition
for every
.
![$ \ensuremath{\operatorname{up}}x = \left\{ Y \in \mathfrak{Z} \hspace{0.5em} | \hspace{0.5em} Y \geqslant x \right\} $](/files/tex/e0dd312a0d02bed5a2531f7c04f9a9c925a7e427.png)
![$ X \in \mathfrak{A} $](/files/tex/9cbd101f45e7f6ced648f9546606ca69e2330433.png)
Definition
(upgrading the set
) for every
.
![$ E^{\ast} K = \left\{ L \in \mathfrak{A} \hspace{0.5em} | \hspace{0.5em} \ensuremath{\operatorname{up}}L \subseteq K \right\} $](/files/tex/5ac0bb072b8567781c862aca1decbe1f100bc971.png)
![$ K $](/files/tex/fe461893b9f87593e8b79d83455b531cd9f29913.png)
![$ K \in \mathscr{P} \mathfrak{Z} $](/files/tex/296ef11d0a13a6388c1efe4b2d778a7cf0aae1ec.png)
Definition A free star on a join-semilattice
with least element 0 is a set
such that
and
![$ \mathfrak{A} $](/files/tex/702b76abd81b24daaf0e6bc2a191fb964b09d1b2.png)
![$ S $](/files/tex/d2b76a0ee5465d3e3ecc846c8e3d632edd8b2bbf.png)
![$ 0 \not\in S $](/files/tex/c463791790caa96fa1b5b7cab0e06d67837b699e.png)
![\[ \forall A, B \in \mathfrak{A}: \left( A \cup B \in S \Leftrightarrow A \in S \vee B \in S \right) . \]](/files/tex/70420d16ddf609e4c505908182520a5bcf379d3e.png)
Definition Let
be a family of posets,
(
has the order of function space of posets),
,
. Then
![$ \mathfrak{A} $](/files/tex/702b76abd81b24daaf0e6bc2a191fb964b09d1b2.png)
![$ f \in \mathscr{P} \prod \mathfrak{A} $](/files/tex/f19dc00476ce64a53ac23d224eb3b114c4b6428c.png)
![$ \prod \mathfrak{A} $](/files/tex/2c9c9d07355987c6df23d313459d3e1faca00437.png)
![$ i \in \ensuremath{\operatorname{dom}}\mathfrak{A} $](/files/tex/9aa2a34eee3a3e621f3dc2f7d3f8c3c4b04cab41.png)
![$ L \in \prod \mathfrak{A}|_{\left( \ensuremath{\operatorname{dom}}\mathfrak{A} \right) \setminus \left\{ i \right\}} $](/files/tex/1fe99dd1b43e5334d437ca46dec2cd1481975496.png)
![\[ \left( \ensuremath{\operatorname{val}}f \right)_i L = \left\{ X \in \mathfrak{A}_i \hspace{0.5em} | \hspace{0.5em} L \cup \left\{ (i ; X) \right\} \in f \right\} . \]](/files/tex/402ce92b70bfd908eefa69f8ec7f3b5cd3cb72d2.png)
Definition Let
is a family of posets. A multidimensional funcoid (or multifuncoid for short) of the form
is an
such that we have that:
![$ \mathfrak{A} $](/files/tex/702b76abd81b24daaf0e6bc2a191fb964b09d1b2.png)
![$ \mathfrak{A} $](/files/tex/702b76abd81b24daaf0e6bc2a191fb964b09d1b2.png)
![$ f \in \mathscr{P} \prod \mathfrak{A} $](/files/tex/549eb9137ca23d96fcd29b48666a1612a8a5818b.png)
- \item
![$ \left( \tmop{val} f \right)_i L $](/files/tex/f70c229dcc28ac2c5754bedd2a13d8fe92718166.png)
![$ i \in \tmop{dom} \mathfrak{A} $](/files/tex/81ebd97ee916a57c2192d5a340ebfbdb9fa96888.png)
![$ L \in \prod \mathfrak{A}|_{\left( \tmop{dom} \mathfrak{A} \right) \setminus \left\{ i \right\}} $](/files/tex/380bb543c93d88fe89d8b7493436a5f513775736.png)
\item is an upper set.
is a function space over a poset
that is
for
.
It is not hard to prove this conjecture for the case using the techniques from this my article. But I failed to prove it for
and above.
Bibliography
* indicates original appearance(s) of problem.