![](/files/happy5.png)
Conjecture If in a bridgeless cubic graph
the cycles of any
-factor are odd, then
, where
denotes the oddness of the graph
, that is, the minimum number of odd cycles in a
-factor of
.
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ 2 $](/files/tex/5271e36bb1c040e0f14061d89cd97d0c86d4e06f.png)
![$ \omega(G)\leq 2 $](/files/tex/ce8d5f37a0abbcd74e6dd92ef872203c1c51b8d4.png)
![$ \omega(G) $](/files/tex/1ffde08316d085349f8e182472c09fd26e466d8e.png)
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
![$ 2 $](/files/tex/5271e36bb1c040e0f14061d89cd97d0c86d4e06f.png)
![$ G $](/files/tex/b8e7ad0330f925492bf468b5c379baec88cf1b3d.png)
Recomm. for undergrads: no |
Posted | by: | Gagik |
on: | January 15th, 2010 |