Recent Activity

Are all Fermat Numbers square-free? ★★★


Conjecture   Are all Fermat Numbers \[ F_n  = 2^{2^{n } }  + 1 \] Square-Free?


Hedetniemi's Conjecture ★★★

Author(s): Hedetniemi

Conjecture   If $ G,H $ are simple finite graphs, then $ \chi(G \times H) = \min \{ \chi(G), \chi(H) \} $.

Here $ G \times H $ is the tensor product (also called the direct or categorical product) of $ G $ and $ H $.

Keywords: categorical product; coloring; homomorphism; tensor product

Choosability of Graph Powers ★★

Author(s): Noel

Question  (Noel, 2013)   Does there exist a function $ f(k)=o(k^2) $ such that for every graph $ G $, \[\text{ch}\left(G^2\right)\leq f\left(\chi\left(G^2\right)\right)?\]

Keywords: choosability; chromatic number; list coloring; square of a graph

Large acyclic induced subdigraph in a planar oriented graph. ★★

Author(s): Harutyunyan

Conjecture   Every planar oriented graph $ D $ has an acyclic induced subdigraph of order at least $ \frac{3}{5} |V(D)| $.


Polignac's Conjecture ★★★

Author(s): de Polignac

Conjecture   Polignac's Conjecture: For any positive even number n, there are infinitely many prime gaps of size n. In other words: There are infinitely many cases of two consecutive prime numbers with difference n.

In particular, this implies:

Conjecture   Twin Prime Conjecture: There are an infinite number of twin primes.

Keywords: prime; prime gap

Alexa's Conjecture on Primality ★★

Author(s): Alexa

Definition   Let $ r_i $ be the unique integer (with respect to a fixed $ p\in\mathbb{N} $) such that

$$(2i+1)^{p-1} \equiv r_i \pmod p ~~\text{ and } ~ 0 \le r_i < p. $$

Conjecture   A natural number $ p \ge 8 $ is a prime iff $$ \displaystyle \sum_{i=1}^{\left \lfloor \frac{\sqrt[3]p}{2} \right \rfloor} r_i = \left \lfloor \frac{\sqrt[3]p}{2} \right \rfloor $$

Keywords: primality

P vs. BPP ★★★

Author(s): Folklore

Conjecture   Can all problems that can be computed by a probabilistic Turing machine (with error probability < 1/3) in polynomial time be solved by a deterministic Turing machine in polynomial time? That is, does P = BPP?

Keywords: BPP; circuit complexity; pseudorandom generators

Goldbach conjecture ★★★★

Author(s): Goldbach

Conjecture   Every even integer greater than 2 is the sum of two primes.

Keywords: additive basis; prime

Goldberg's conjecture ★★★

Author(s): Goldberg

The overfull parameter is defined as follows: \[ w(G) = \max_{H \subseteq G} \left\lceil \frac{ |E(H)| }{ \lfloor \tfrac{1}{2} |V(H)| \rfloor} \right\rceil. \]

Conjecture   Every graph $ G $ satisfies $ \chi'(G) \le \max\{ \Delta(G) + 1, w(G) \} $.

Keywords: edge-coloring; multigraph

Cyclic spanning subdigraph with small cyclomatic number ★★

Author(s): Bondy

Conjecture   Let $ D $ be a digraph all of whose strong components are nontrivial. Then $ D $ contains a cyclic spanning subdigraph with cyclomatic number at most $ \alpha(D) $.


inverse of an integer matrix ★★

Author(s): Gregory

Question   I've been working on this for a long time and I'm getting nowhere. Could you help me or at least tell me where to look for help. Suppose D is an m-by-m diagonal matrix with integer elements all $ \ge 2 $. Suppose X is an m-by-n integer matrix $ (m \le n) $. Consider the partitioned matrix M = [D X]. Obviously M has full row rank so it has a right inverse of rational numbers. The question is, under what conditions does it have an integer right inverse? My guess, which I can't prove, is that the integers in each row need to be relatively prime.

Keywords: invertable matrices, integer matrices

Minimum number of arc-disjoint transitive subtournaments of order 3 in a tournament ★★

Author(s): Yuster

Conjecture   If $ T $ is a tournament of order $ n $, then it contains $ \left \lceil n(n-1)/6 - n/3\right\rceil $ arc-disjoint transitive subtournaments of order 3.


Arc-disjoint directed cycles in regular directed graphs ★★

Author(s): Alon; McDiarmid; Molloy

Conjecture   If $ G $ is a $ k $-regular directed graph with no parallel arcs, then $ G $ contains a collection of $ {k+1 \choose 2} $ arc-disjoint directed cycles.


Jacob Palis Conjecture(Finitude of Attractors)(Dynamical Systems) ★★★★


Conjecture   Let $ Diff^{r}(M)  $ be the space of $ C^{r} $ Diffeomorphisms on the connected , compact and boundaryles manifold M and $ \chi^{r}(M) $ the space of $ C^{r} $ vector fields. There is a dense set $ D\subset Diff^{r}(M) $ ($ D\subset \chi^{r}(M) $ ) such that $ \forall f\in D $ exhibit a finite number of attractor whose basins cover Lebesgue almost all ambient space $ M $

This is a very Deep and Hard problem in Dynamical Systems . It present the dream of the dynamicist mathematicians .

Keywords: Attractors , basins, Finite

Closing Lemma for Diffeomorphism (Dynamical Systems) ★★★★

Author(s): Charles Pugh

Conjecture   Let $ f\in Diff^{r}(M) $ and $ p\in\omega_{f}  $. Then for any neighborhood $ V_{f}\subset Diff^{r}(M)  $ there is $ g\in V_{f} $ such that $ p $ is periodic point of $ g $

There is an analogous conjecture for flows ( $ C^{r} $ vector fields . In the case of diffeos this was proved by Charles Pugh for $ r = 1 $. In the case of Flows this has been solved by Sushei Hayahshy for $ r = 1 $ . But in the two cases the problem is wide open for $ r > 1 $

Keywords: Dynamics , Pertubation

Sub-atomic product of funcoids is a categorical product ★★


Conjecture   In the category of continuous funcoids (defined similarly to the category of topological spaces) the following is a direct categorical product:
    \item Product morphism is defined similarly to the category of topological spaces. \item Product object is the sub-atomic product. \item Projections are sub-atomic projections.

See details, exact definitions, and attempted proofs here.


Bounding the on-line choice number in terms of the choice number ★★

Author(s): Zhu

Question   Are there graphs for which $ \text{ch}^{\text{OL}}-\text{ch} $ is arbitrarily large?

Keywords: choosability; list coloring; on-line choosability

Are almost all graphs determined by their spectrum? ★★★


Problem   Are almost all graphs uniquely determined by the spectrum of their adjacency matrix?

Keywords: cospectral; graph invariant; spectrum

Signing a graph to have small magnitude eigenvalues ★★

Author(s): Bilu; Linial

Conjecture   If $ A $ is the adjacency matrix of a $ d $-regular graph, then there is a symmetric signing of $ A $ (i.e. replace some $ +1 $ entries by $ -1 $) so that the resulting matrix has all eigenvalues of magnitude at most $ 2 \sqrt{d-1} $.

Keywords: eigenvalue; expander; Ramanujan graph; signed graph; signing

The Bollobás-Eldridge-Catlin Conjecture on graph packing ★★★


Conjecture  (BEC-conjecture)   If $ G_1 $ and $ G_2 $ are $ n $-vertex graphs and $ (\Delta(G_1) + 1) (\Delta(G_2) + 1) < n + 1 $, then $ G_1 $ and $ G_2 $ pack.

Keywords: graph packing