A diagram about funcoids and reloids ★★

Author(s): Porton

Define for posets with order $ \sqsubseteq $:

  1. $ \Phi_{\ast} f = \lambda b \in \mathfrak{B}: \bigcup \{ x \in \mathfrak{A} \mid f x \sqsubseteq b \} $;
  2. $ \Phi^{\ast} f = \lambda b \in \mathfrak{A}: \bigcap \{ x \in \mathfrak{B} \mid f x \sqsupseteq b \} $.

Note that the above is a generalization of monotone Galois connections (with $ \max $ and $ \min $ replaced with suprema and infima).

Then we have the following diagram:

What is at the node "other" in the diagram is unknown.

Conjecture   "Other" is $ \lambda f\in\mathsf{FCD}: \top $.
Question   What repeated applying of $ \Phi_{\ast} $ and $ \Phi^{\ast} $ to "other" leads to? Particularly, does repeated applying $ \Phi_{\ast} $ and/or $ \Phi^{\ast} $ to the node "other" lead to finite or infinite sets?

Keywords: Galois connections

Outward reloid of composition vs composition of outward reloids ★★

Author(s): Porton

Conjecture   For every composable funcoids $ f $ and $ g $ $$(\mathsf{RLD})_{\mathrm{out}}(g\circ f)\sqsupseteq(\mathsf{RLD})_{\mathrm{out}}g\circ(\mathsf{RLD})_{\mathrm{out}}f.$$

Keywords: outward reloid

A funcoid related to directed topological spaces ★★

Author(s): Porton

Conjecture   Let $ R $ be the complete funcoid corresponding to the usual topology on extended real line $ [-\infty,+\infty] = \mathbb{R}\cup\{-\infty,+\infty\} $. Let $ \geq $ be the order on this set. Then $ R\sqcap^{\mathsf{FCD}}\mathord{\geq} $ is a complete funcoid.
Proposition   It is easy to prove that $ \langle R\sqcap^{\mathsf{FCD}}\mathord{\geq}\rangle \{x\} $ is the infinitely small right neighborhood filter of point $ x\in[-\infty,+\infty] $.

If proved true, the conjecture then can be generalized to a wider class of posets.

Keywords:

Infinite distributivity of meet over join for a principal funcoid ★★

Author(s): Porton

Conjecture   $ f \sqcap \bigsqcup S = \bigsqcup \langle f \sqcap \rangle^{\ast} S $ for principal funcoid $ f $ and a set $ S $ of funcoids of appropriate sources and destinations.

Keywords: distributivity; principal funcoid

Entourages of a composition of funcoids ★★

Author(s): Porton

Conjecture   $ \forall H \in \operatorname{up} (g \circ f) \exists F \in \operatorname{up} f, G \in \operatorname{up} g : H \sqsupseteq G \circ F $ for every composable funcoids $ f $ and $ g $.

Keywords: composition of funcoids; funcoids