Cycle Double Covers Containing Predefined 2-Regular Subgraphs ★★★

Author(s): Arthur; Hoffmann-Ostenhof

Conjecture   Let $ G $ be a $ 2 $-connected cubic graph and let $ S $ be a $ 2 $-regular subgraph such that $ G-E(S) $ is connected. Then $ G $ has a cycle double cover which contains $ S $ (i.e all cycles of $ S $).

Keywords:

Monochromatic reachability in arc-colored digraphs ★★★

Author(s): Sands; Sauer; Woodrow

Conjecture   For every $ k $, there exists an integer $ f(k) $ such that if $ D $ is a digraph whose arcs are colored with $ k $ colors, then $ D $ has a $ S $ set which is the union of $ f(k) $ stables sets so that every vertex has a monochromatic path to some vertex in $ S $.

Keywords:

3-Decomposition Conjecture ★★★

Author(s): Arthur; Hoffmann-Ostenhof

Conjecture   (3-Decomposition Conjecture) Every connected cubic graph $ G $ has a decomposition into a spanning tree, a family of cycles and a matching.

Keywords: cubic graph

Which outer reloids are equal to inner ones ★★

Author(s): Porton

Warning: This formulation is vague (not exact).

Question   Characterize the set $ \{f\in\mathsf{FCD} \mid (\mathsf{RLD})_{\mathrm{in}} f=(\mathsf{RLD})_{\mathrm{out}} f\} $. In other words, simplify this formula.

The problem seems rather difficult.

Keywords:

A diagram about funcoids and reloids ★★

Author(s): Porton

Define for posets with order $ \sqsubseteq $:

  1. $ \Phi_{\ast} f = \lambda b \in \mathfrak{B}: \bigcup \{ x \in \mathfrak{A} \mid f x \sqsubseteq b \} $;
  2. $ \Phi^{\ast} f = \lambda b \in \mathfrak{A}: \bigcap \{ x \in \mathfrak{B} \mid f x \sqsupseteq b \} $.

Note that the above is a generalization of monotone Galois connections (with $ \max $ and $ \min $ replaced with suprema and infima).

Then we have the following diagram:

What is at the node "other" in the diagram is unknown.

Conjecture   "Other" is $ \lambda f\in\mathsf{FCD}: \top $.
Question   What repeated applying of $ \Phi_{\ast} $ and $ \Phi^{\ast} $ to "other" leads to? Particularly, does repeated applying $ \Phi_{\ast} $ and/or $ \Phi^{\ast} $ to the node "other" lead to finite or infinite sets?

Keywords: Galois connections

Outward reloid of composition vs composition of outward reloids ★★

Author(s): Porton

Conjecture   For every composable funcoids $ f $ and $ g $ $$(\mathsf{RLD})_{\mathrm{out}}(g\circ f)\sqsupseteq(\mathsf{RLD})_{\mathrm{out}}g\circ(\mathsf{RLD})_{\mathrm{out}}f.$$

Keywords: outward reloid

A funcoid related to directed topological spaces ★★

Author(s): Porton

Conjecture   Let $ R $ be the complete funcoid corresponding to the usual topology on extended real line $ [-\infty,+\infty] = \mathbb{R}\cup\{-\infty,+\infty\} $. Let $ \geq $ be the order on this set. Then $ R\sqcap^{\mathsf{FCD}}\mathord{\geq} $ is a complete funcoid.
Proposition   It is easy to prove that $ \langle R\sqcap^{\mathsf{FCD}}\mathord{\geq}\rangle \{x\} $ is the infinitely small right neighborhood filter of point $ x\in[-\infty,+\infty] $.

If proved true, the conjecture then can be generalized to a wider class of posets.

Keywords: