Open Problem Garden
login/create account
Home
»
Subject
Graph Theory
Title
Author(s)
Imp.¹
Rec.²
Topic » Subtopic
Posted by
Complete bipartite subgraphs of perfect graphs
Fox
✭✭
0
Basic G.T.
mdevos
Asymptotic Distribution of Form of Polyhedra
Rüdinger
✭✭
0
Basic G.T.
andreasruedinger
Domination in cubic graphs
Reed
✭✭
0
Basic G.T.
mdevos
Friendly partitions
DeVos
✭✭
0
Basic G.T.
mdevos
Subgraph of large average degree and large girth.
Thomassen
✭✭
0
Basic G.T.
fhavet
Almost all non-Hamiltonian 3-regular graphs are 1-connected
Haythorpe
✭✭
1
Basic G.T.
mhaythorpe
Partitioning edge-connectivity
DeVos
✭✭
0
Basic G.T.
»
Connectivity
mdevos
Kriesell's Conjecture
Kriesell
✭✭
0
Basic G.T.
»
Connectivity
Jon Noel
Cycle double cover conjecture
Seymour
;
Szekeres
✭✭✭✭
0
Basic G.T.
»
Cycles
mdevos
The circular embedding conjecture
Haggard
✭✭✭
0
Basic G.T.
»
Cycles
mdevos
(m,n)-cycle covers
Celmins
;
Preissmann
✭✭✭
0
Basic G.T.
»
Cycles
mdevos
Faithful cycle covers
Seymour
✭✭✭
0
Basic G.T.
»
Cycles
mdevos
Decomposing eulerian graphs
✭✭✭
0
Basic G.T.
»
Cycles
mdevos
Barnette's Conjecture
Barnette
✭✭✭
0
Basic G.T.
»
Cycles
Robert Samal
r-regular graphs are not uniquely hamiltonian.
Sheehan
✭✭✭
0
Basic G.T.
»
Cycles
Robert Samal
Hamiltonian cycles in line graphs
Thomassen
✭✭✭
0
Basic G.T.
»
Cycles
Robert Samal
Geodesic cycles and Tutte's Theorem
Georgakopoulos
;
Sprüssel
✭✭
1
Basic G.T.
»
Cycles
Agelos
Jones' conjecture
Kloks
;
Lee
;
Liu
✭✭
0
Basic G.T.
»
Cycles
cmlee
Chords of longest cycles
Thomassen
✭✭✭
0
Basic G.T.
»
Cycles
mdevos
Hamiltonicity of Cayley graphs
Rapaport-Strasser
✭✭✭
1
Basic G.T.
»
Cycles
tchow
Strong 5-cycle double cover conjecture
Arthur
;
Hoffmann-Ostenhof
✭✭✭
1
Basic G.T.
»
Cycles
arthur
Decomposing an eulerian graph into cycles.
Hajós
✭✭
0
Basic G.T.
»
Cycles
fhavet
Decomposing an eulerian graph into cycles with no two consecutives edges on a prescribed eulerian tour.
Sabidussi
✭✭
0
Basic G.T.
»
Cycles
fhavet
Every prism over a 3-connected planar graph is hamiltonian.
Kaiser
;
Král
;
Rosenfeld
;
Ryjácek
;
Voss
✭✭
0
Basic G.T.
»
Cycles
fhavet
4-connected graphs are not uniquely hamiltonian
Fleischner
✭✭
0
Basic G.T.
»
Cycles
fhavet
Hamilton decomposition of prisms over 3-connected cubic planar graphs
Alspach
;
Rosenfeld
✭✭
0
Basic G.T.
»
Cycles
fhavet
The Berge-Fulkerson conjecture
Berge
;
Fulkerson
✭✭✭✭
0
Basic G.T.
»
Matchings
mdevos
The intersection of two perfect matchings
Macajova
;
Skoviera
✭✭
0
Basic G.T.
»
Matchings
mdevos
Matchings extend to Hamiltonian cycles in hypercubes
Ruskey
;
Savage
✭✭
1
Basic G.T.
»
Matchings
Jirka
Random stable roommates
Mertens
✭✭
0
Basic G.T.
»
Matchings
mdevos
Highly connected graphs with no K_n minor
Thomas
✭✭✭
0
Basic G.T.
»
Minors
mdevos
Jorgensen's Conjecture
Jorgensen
✭✭✭
0
Basic G.T.
»
Minors
mdevos
Seagull problem
Seymour
✭✭✭
0
Basic G.T.
»
Minors
mdevos
Forcing a $K_6$-minor
Barát
;
Joret
;
Wood
✭✭
0
Basic G.T.
»
Minors
David Wood
Forcing a 2-regular minor
Reed
;
Wood
✭✭
1
Basic G.T.
»
Minors
David Wood
Decomposing a connected graph into paths.
Gallai
✭✭✭
0
Basic G.T.
»
Paths
fhavet
Partition of a cubic 3-connected graphs into paths of length 2.
Kelmans
✭✭
0
Basic G.T.
»
Paths
fhavet
Linial-Berge path partition duality
Berge
;
Linial
✭✭✭
0
Coloring
berger
Three-chromatic (0,2)-graphs
Payan
✭✭
0
Coloring
Gordon Royle
Total Colouring Conjecture
Behzad
✭✭✭
0
Coloring
Iradmusa
4-regular 4-chromatic graphs of high girth
Grunbaum
✭✭
0
Coloring
mdevos
Coloring the union of degenerate graphs
Tarsi
✭✭
0
Coloring
fhavet
List Total Colouring Conjecture
Borodin
;
Kostochka
;
Woodall
✭✭
0
Coloring
Jon Noel
Petersen coloring conjecture
Jaeger
✭✭✭
0
Coloring
»
Edge coloring
mdevos
Packing T-joins
DeVos
✭✭
0
Coloring
»
Edge coloring
mdevos
Acyclic edge-colouring
Fiamcik
✭✭
0
Coloring
»
Edge coloring
mdevos
A generalization of Vizing's Theorem?
Rosenfeld
✭✭
0
Coloring
»
Edge coloring
mdevos
List colorings of edge-critical graphs
Mohar
✭✭
0
Coloring
»
Edge coloring
Robert Samal
Universal Steiner triple systems
Grannell
;
Griggs
;
Knor
;
Skoviera
✭✭
0
Coloring
»
Edge coloring
macajova
Edge list coloring conjecture
✭✭✭
0
Coloring
»
Edge coloring
tchow
« first
‹ previous
1
2
3
4
5
next ›
last »
Navigate
more
Recent Activity
3-Edge-Coloring Conjecture
Several ways to apply a (multivalued) multiargument function to a family of filters
Jones' conjecture
Multicolour Erdős--Hajnal Conjecture
Sidorenko's Conjecture
more